Groups -  Antonio Machi

Groups (eBook)

An Introduction to Ideas and Methods of the Theory of Groups
eBook Download: PDF
2012 | 1. Auflage
XIII, 385 Seiten
Springer Milan (Verlag)
978-88-470-2421-2 (ISBN)
Systemvoraussetzungen
41,64 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Hölder's program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text. Infinite groups are also considered, with particular attention to logical and decision problems. Abelian, nilpotent and solvable groups are studied both in the finite and infinite case. Permutation groups and are treated in detail; their relationship with Galois theory is often taken into account. The last two chapters deal with the representation theory of finite group and the cohomology theory of groups; the latter with special emphasis on the extension problem. The sections are followed by exercises; hints to the solution are given, and for most of them a complete solution is provided.
Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Holder's program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text. Infinite groups are also considered, with particular attention to logical and decision problems. Abelian, nilpotent and solvable groups are studied both in the finite and infinite case. Permutation groups and are treated in detail; their relationship with Galois theory is often taken into account. The last two chapters deal with the representation theory of finite group and the cohomology theory of groups; the latter with special emphasis on the extension problem. The sections are followed by exercises; hints to the solution are given, and for most of them a complete solution is provided.

Preface 5
Notation 8
Table of Contents 9
1 Introductory Notions 12
1.1 Definitions and First Theorems 12
1.2 Cosets and Lagrange’s Theorem 35
1.3 Automorphisms 45
2 Normal Subgroups, Conjugation and Isomorphism Theorems 49
2.1 Product of Subgroups 49
2.2 Normal Subgroups and Quotient Groups 50
2.3 Conjugation 60
2.4 Normalizers and Centralizers of Subgroups 69
2.5 H¨older’s Program 73
2.6 Direct Products 77
2.7 Semidirect Products 83
2.8 Symmetric and Alternating Groups 88
2.9 The Derived Group 92
3 Group Actions and Permutation Groups 97
3.1 Group actions 97
3.2 The Sylow Theorem 109
3.3 Burnside’s Formula and Permutation Characters 127
3.4 Induced Actions 135
3.5 Permutations Commuting with an Action 138
3.6 Automorphisms of Symmetric Groups 144
3.7 Permutations and Inversions 146
3.8 Some Simple Groups 153
3.8.1 The Simple Group of Order 168 153
3.8.2 Projective Special Linear Groups 157
4 Generators and Relations 164
4.1 Generating Sets 164
4.2 The Frattini Subgroup 169
4.3 Finitely Generated Abelian Groups 173
4.4 Free abelian groups 179
4.5 Projective and Injective Abelian Groups 187
4.6 Characters of Abelian Groups 190
4.7 Free Groups 192
4.8 Relations 197
4.8.1 Relations and simple Groups 201
4.9 Subgroups of Free Groups 203
4.10 The Word Problem 207
4.11 Residual Properties 209
5 Nilpotent Groups and Solvable Groups 214
5.1 Central Series and Nilpotent Groups 214
5.2 p-Nilpotent Groups 232
5.3 Fusion 238
5.4 Fixed-Point-Free Automorphisms and Frobenius Groups 241
5.5 Solvable Groups 246
6 Representations 262
6.1 Definitions and examples 262
6.1.1 Maschke’s Theorem 266
6.2 Characters 268
6.3 The Character Table 284
6.3.1 Burnside’s Theorem and Frobenius Theorem 289
6.3.2 Topological Groups 294
7 Extensions and Cohomology 298
7.1 Crossed Homomorphisms 298
7.2 The First Cohomology Group 301
7.3 The Second Cohomology Group 310
7.3.1 H1 and Extensions 316
7.3.2 H2(p,A) for p Finite Cyclic 317
7.4 The Schur Multiplier 321
7.4.1 Projective Representations 322
7.4.2 Covering Groups 324
7.4.3 M(p) and Presentations of p 329
8 Solution to the exercises 335
8.1 Chapter 1 335
8.2 Chapter 2 337
8.3 Chapter 3 343
8.4 Chapter 4 354
8.5 Chapter 5 359
8.6 Chapter 6 366
References 371
Index 373

Erscheint lt. Verlag 5.4.2012
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Technik
ISBN-10 88-470-2421-8 / 8847024218
ISBN-13 978-88-470-2421-2 / 9788847024212
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich