The Regularized Fast Hartley Transform - Keith Jones

The Regularized Fast Hartley Transform

Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments

(Autor)

Buch | Softcover
200 Seiten
2012
Springer (Verlag)
978-94-007-3178-3 (ISBN)
144,44 inkl. MwSt
Zu diesem Artikel existiert eine Nachauflage
Direct solution to real-data DFT methods are presented in this volume, which are targeted at real-world applications, like mobile communications. The methods discussed offer simple design variations that optimize resources for the best results.
Most real-world spectrum analysis problems involve the computation of the real-data discrete Fourier transform (DFT), a unitary transform that maps elements N of the linear space of real-valued N-tuples, R , to elements of its complex-valued N counterpart, C , and when carried out in hardware it is conventionally achieved via a real-from-complex strategy using a complex-data version of the fast Fourier transform (FFT), the generic name given to the class of fast algorithms used for the ef?cient computation of the DFT. Such algorithms are typically derived by explo- ing the property of symmetry, whether it exists just in the transform kernel or, in certain circumstances, in the input data and/or output data as well. In order to make effective use of a complex-data FFT, however, via the chosen real-from-complex N strategy, the input data to the DFT must ?rst be converted from elements of R to N elements of C . The reason for choosing the computational domain of real-data problems such N N as this to be C , rather than R , is due in part to the fact that computing equ- ment manufacturers have invested so heavily in producing digital signal processing (DSP) devices built around the design of the complex-data fast multiplier and accumulator (MAC), an arithmetic unit ideally suited to the implementation of the complex-data radix-2 butter?y, the computational unit used by the familiar class of recursive radix-2 FFT algorithms.

Background to Research.- Fast Solutions to Real-Data Discrete Fourier Transform.- The Discrete Hartley Transform.- Derivation of the Regularized Fast Hartley Transform.- Algorithm Design for Hardware-Based Computing Technologies.- Derivation of Area-Efficient and Scalable Parallel Architecture.- Design of Arithmetic Unit for Resource-Constrained Solution.- Computation of 2n-Point Real-Data Discrete Fourier Transform.- Applications of Regularized Fast Hartley Transform.- Summary and Conclusions.

Erscheint lt. Verlag 5.5.2012
Reihe/Serie Signals and Communication Technology
Zusatzinfo XVII, 200 p.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Complexity • FFT • FHT • FPGA • Parallel
ISBN-10 94-007-3178-7 / 9400731787
ISBN-13 978-94-007-3178-3 / 9789400731783
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
das umfassende Handbuch für den Einstieg in die Netzwerktechnik

von Martin Linten; Axel Schemberg; Kai Surendorf

Buch | Hardcover (2023)
Rheinwerk (Verlag)
29,90
das Praxisbuch für Admins und DevOps-Teams

von Michael Kofler

Buch | Hardcover (2023)
Rheinwerk (Verlag)
39,90