Notes on the Witt Classification of Hermitian Innerproduct Spaces over a Ring of Algebraic Integers - P. E. Conner

Notes on the Witt Classification of Hermitian Innerproduct Spaces over a Ring of Algebraic Integers

(Autor)

Buch | Softcover
158 Seiten
1979
University of Texas Press (Verlag)
978-0-292-74067-9 (ISBN)
24,90 inkl. MwSt
The lectures comprising this volume were delivered by P. E. Conner at the University of Texas at Austin in 1978. The lectures are intended to give mathematicians at the graduate level and beyond some powerful algebraic and number theoretical tools for formulating and solving certain types of classification problems in topology.

P. E. Conner was Nicholson Professor of Mathematics at Louisiana State University.

Introduction
I. Relative Quadratic Extensions

1. Extension of primes
2. Hilbert symbols
3. The group Gen(E/F)
4. The group Iso(E/F)
5. The unramified case
6. Examples


II. The Witt Ring H(E)

1. General definitions
2. Anisotropic representatives
3. Invariants for H(E)
4. Algebraic number fields


III. Torsion Forms

1. Torsion OE-modules
2. The quotient E/K
3. Torsion innerproducts
4. Localizers
5. The inverse different


IV. The Group Hu(K)

1. Basic definitions
2. The group Iso(E/F) again
3. The Knebusch exact sequence
4. Localization
5. Computing Hu(K)
6. The ring H(OE)
7. The Cokernel of δ


V. The Witt Ring W(OF)

1. Symbols
2. The boundary operator
3. The ring W(OF)


References
Symbol List

Erscheint lt. Verlag 15.3.2012
Verlagsort Austin, TX
Sprache englisch
Maße 216 x 279 mm
Gewicht 454 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-292-74067-0 / 0292740670
ISBN-13 978-0-292-74067-9 / 9780292740679
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
A Selection of Highlights

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
69,95