Representations of Finite Groups: Local Cohomology and Support (eBook)
X, 105 Seiten
Springer Basel (Verlag)
978-3-0348-0260-4 (ISBN)
The seminar focuses on a recent solution, by the authors, of a long standing problem concerning the stable module category (of not necessarily finite dimensional representations) of a finite group. The proof draws on ideas from commutative algebra, cohomology of groups, and stable homotopy theory. The unifying theme is a notion of support which provides a geometric approach for studying various algebraic structures. The prototype for this has been Daniel Quillen’s description of the algebraic variety corresponding to the cohomology ring of a finite group, based on which Jon Carlson introduced support varieties for modular representations. This has made it possible to apply methods of algebraic geometry to obtain representation theoretic information. Their work has inspired the development of analogous theories in various contexts, notably modules over commutative complete intersection rings and over cocommutative Hopf algebras. One of the threads in this development has been the classification of thick or localizing subcategories of various triangulated categories of representations. This story started with Mike Hopkins’ classification of thick subcategories of the perfect complexes over a commutative Noetherian ring, followed by a classification of localizing subcategories of its full derived category, due to Amnon Neeman. The authors have been developing an approach to address such classification problems, based on a construction of local cohomology functors and support for triangulated categories with ring of operators. The book serves as an introduction to this circle of ideas.
Preface.- 1 Monday.- 1.1 Overview.- 1.2 Modules over group algebras.- 1.3 Triangulated categories.- 1.4 Exercises.- 2 Tuesday.- 2.1 Perfect complexes over commutative rings.- 2.2 Brown representability and localization.- 2.3 The stable module category of a finite group.- 2.4 Exercises.- 3 Wednesday.- 3.1.- 3.2 Koszul objects and support.- 3.3 The homotopy category of injectives.- 3.4 Exercises.- 4 Thursday.- 4.1 Stratifying triangulated categories.- 4.2 Consequences of stratification.- 4.3 The Klein four group.- 4.4 Exercises.- 5 Friday.- 5.1 Localising subcategories of D(A).- 5.2 Elementary abelian 2-groups.- 5.3 Stratification for arbitrary finite groups.- 5.4 Exercises.- A Support for modules over commutative rings.- Bibliography.- Index.
Erscheint lt. Verlag | 17.12.2011 |
---|---|
Reihe/Serie | Oberwolfach Seminars |
Verlagsort | Basel |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik | |
Schlagworte | Homological algebra and category theory • Homological methods for commutative rings • Homological methods for noncommutative rings |
ISBN-10 | 3-0348-0260-9 / 3034802609 |
ISBN-13 | 978-3-0348-0260-4 / 9783034802604 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 1,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich