Statistical and Machine Learning Approaches for Network Analysis
John Wiley & Sons Inc (Hersteller)
978-1-118-34699-0 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
MATTHIAS DEHMER, PHD, is Head of the Institute for Bioinformatics and Trans- lational Research at the University for Health Sciences, Medical Informatics and Technology (Austria). He has written over 130 publications in his research areas, which include bioinformatics, systems biology, and applied discrete mathematics. Dr. Dehmer is also the coeditor of Applied Statistics for Network Biology, Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Medical Biostatistics for Complex Diseases, Analysis of Complex Networks, and Analysis of Microarray Data, all published by Wiley. SUBHASH C. BASAK, PHD, is Senior Research Associate at the Natural Resources Research Institute. He has published extensively in the areas of biochemical pharmacology, toxicology, mathematical chemistry, and computational chemistry.
Chapter 1. A Survey of Computational Approaches to Reconstruct and Partition Biological Networks Acharya et al. Chapter 2. Introduction to Complex Networks: Measures, Statistical Properties, and Models Takemoto et al. Chapter 3. Modeling for Evolving Biological Networks Takemoto et al. Chapter 4. Modularity Configurations in Biological Networks with Embedded Dynamics Capobianco et al. Chapter 5. Influence of Statistical Estimators on the Large Scale Causal Inference of Regulatory Networks Matos de Simoes and Emmert-Streib Chapter 6. Weighted Spectral Distribution: A Metric for Structural Analysis of Networks Fay, Haddadi et al. Chapter 7. The Structure of an Evolving Random Bipartite Graph Kutzelnigg Chapter 8. Graph Kernels Rupp Chapter 9. Network-based information synergy analysis for Alzheimer disease Wang, Geekiyanage and Chan Chapter 10. Density-Based Set Enumeration in Structured Data Georgii and Tsuda Chapter 11. Hyponym Extraction Employing a Weighted Graph Kernel Vor der Bruck
Verlagsort | New York |
---|---|
Sprache | englisch |
Maße | 242 x 273 mm |
Gewicht | 1951 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
ISBN-10 | 1-118-34699-8 / 1118346998 |
ISBN-13 | 978-1-118-34699-0 / 9781118346990 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |