Theory of Stochastic Processes - Dmytro Gusak, Alexander Kukush, Alexey Kulik, Yuliya Mishura, Andrey Pilipenko

Theory of Stochastic Processes

With Applications to Financial Mathematics and Risk Theory
Buch | Softcover
376 Seiten
2012 | Previously published in hardcover
Springer-Verlag New York Inc.
978-1-4614-2506-9 (ISBN)
53,49 inkl. MwSt
Providing the necessary materials within a theoretical framework, this volume presents stochastic principles and processes, and related areas. Over 1000 exercises illustrate the concepts discussed, including modern approaches to sample paths and optimal stopping.
Thiscollectionofproblemsisplannedasatextbookforuniversitycoursesinthe theoryofstochasticprocessesandrelatedspecialcourses. Theproblemsinthebook haveawidespectrumofthelevelofdif cultyandcanbeusefulforreaderswith variouslevelsofmasteringinthetheoryofstochasticprocesses. Togetherwithte- nicalandillustrativeproblemsintendedforbeginners,thebookcontainsanumber ofproblemsoftheoreticalnaturethatcanbeusefulforstudentsandundergraduate studentsthatpursueadvancedstudiesinthetheoryofstochasticprocessesandits- plications. Amongothers,theimportantaimofthebookistoprovideateachingstaff anef cienttoolforpreparingseminarstudies,tests,andexamsconcerninguniversity coursesinthetheoryofstochasticprocessesandrelatedtopics. Whilecomposingthe book,theauthorshavepartiallyusedthecollectionsofproblemsinprobabilityt- ory[16,65,75,83]. Also,someexercisesandproblemsfromthemonographsand textbooks[4,9,19,22,82]wereused. Atthesametime,alargepartofourproblem bookcontainsoriginalmaterial. Thebookisorganizedasfollows. Theproblemsarecollectedintochapters,each chapterbeingdevotedtoacertaintopic.
Atthebeginningofeachchapter,theth- reticalgroundsforthecorrespondingtopicaregivenbrie ytogetherwiththelistof bibliography,whichthereadercanuseinordertostudythistopicinmoredetail. For themostoftheproblems,eitherhintsorcompletesolutions(oranswers)aregiven, andsomeoftheproblemsareprovidedwithbothhintsandsolutions(answers). H- ever,theauthorsdonotrecommendthatareaderusethehintssystematically,because solvingaproblemwithoutassistanceismuchmoreusefulthanusingaready-made idea. Somestatementsthathaveaparticulartheoreticalinterestareformulatedon theoreticalgrounds,andtheirproofsareformulatedasproblemsforthereader. Such problemsaresuppliedwitheithercompletesolutionsordetailedhints. Inordertoworkwiththeproblembookef ciently,areadershouldbeacquainted withprobabilitytheory,calculus,andmeasuretheorywithinthescopeofresp- tiveuniversity courses. Standard notions, suchas random variable, measurability, independence, Lebesgue measure and integral, and so on are used without ad- tionaldiscussion. Allthenewnotionsandstatementsrequiredforsolvingthepr- lemsaregiveneitherontheoreticalgroundsorintheformulationsoftheproblems vii viii Preface straightforwardly.
However,sometimesanotionisusedinthetextbeforeitsformal de nition. Forinstance,theWienerandPoissonprocessesareprocesseswithin- pendentincrementsandthusareformallyintroducedinaTheoreticalgroundsfor Chapter5,buttheseprocessesareusedwidelyintheproblemsofChapters2to4. Theauthorsrecommendthatareaderwhocomestoanunknownnotionorobject usetheIndexinorderto ndthecorrespondingformalde nition. Thesamerec- mendationconcernssomestandardabbreviationsandsymbolslistedattheendofthe book. Someproblemsinthebookformcycles:solutionstooneofthemaregrounded onstatementsofothersoronauxiliaryconstructionsdescribedinsomepreceding solutions. Sometimes,onthecontrary,itisproposedtoprovethesamestatement withindifferentproblemsusingessentiallydifferenttechniques. Theauthorsrec- mendareaderpayspeci cattentiontothesefruitfulinternallinksbetweenvarious topicsofthetheoryofstochasticprocesses. Everypartofthebookwascomposedsubstantiallybyoneauthor. Chapters1-6, and16arecomposedbyA. Kulik,Chapters7,12-15,18,and19byYu. Mishura, Chapters 8-10 by A. Pilipenko, Chapter 17 by A. Kukush, and Chapter 20 by D. Gusak. Chapter11waspreparedjointlybyD. GusakandA. Pilipenko.
Atthe sametime,everyauthorhasmadeacontributiontootherpartsofthebookbyprop- ingseparateproblemsorcyclesofproblems,improvingpreliminaryversionsoft- oreticalgrounds,andeditingthe naltext. The authors would like to express their deep gratitude to M. Portenko and A. Ivanovfortheircarefulreadingofapreliminaryversionofthebookandva- ablecommentsthatledtosigni cantimprovementofthetext. Theauthorsarealso gratefultoT. Yakovenko,G. Shevchenko,O. Soloveyko, Yu. Kartashov, Yu. K- menko,A. Malenko,andN. Ryabovafortheirassistanceintranslation,preparing lesandpictures,andcomposingthesubjectindexandreferences. Thetheoryofstochasticprocessesisanextendeddiscipline,andtheauthors- derstandthattheproblembookinitscurrentformmaycausecriticalremarksfrom readers,concerningeitherthestructureofthebookorthecontentofseparatech- ters. Whilepublishingtheproblembookinitscurrentform,theauthorsareopenfor remarks,comments,andpropositions,andexpressinadvancetheirgratitudetoall theircorrespondents. Kyiv DmytroGusak December2008 AlexanderKukush AlexeyKulik YuliyaMishura AndreyPilipenko Contents 1 De?nition of stochastic process. Cylinder?-algebra, ?nite-dimensional distributions, the Kolmogorov theorem...1
Theoreticalgrounds ...1 Bibliography...3 Problems...3 Hints...7 AnswersandSolutions...9 2 Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions...11 Theoreticalgrounds ...11 Bibliography...13 Problems...13 Hints...16 AnswersandSolutions...17 3 Trajectories. Modi?cations. Filtrations...21 Theoreticalgrounds ...21 Bibliography...24 Problems...24 Hints...29 AnswersandSolutions...31 4 Continuity. Differentiability. Integrability...33 Theoreticalgrounds ...33 Bibliography...34 Problems...34 Hints...38 AnswersandSolutions...40 ix x Contents 5 Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures...

Definition of stochastic process. Cylinder #x03C3;-algebra, finite-dimensional distributions, the Kolmogorov theorem.- Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions.- Trajectories. Modifications. Filtrations.- Continuity. Differentiability. Integrability.- Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures.- Gaussian processes.- Martingales and related processes in discrete and continuous time. Stopping times.- Stationary discrete- and continuous-time processes. Stochastic integral over measure with orthogonal values.- Prediction and interpolation.- Markov chains: Discrete and continuous time.- Renewal theory. Queueing theory.- Markov and diffusion processes.- It#x00F4; stochastic integral. It#x00F4; formula. Tanaka formula.- Stochastic differential equations.- Optimal stopping of random sequences and processes.- Measures in a functional spaces. Weak convergence, probability metrics.Functional limit theorems.- Statistics of stochastic processes.- Stochastic processes in financial mathematics (discrete time).- Stochastic processes in financial mathematics (continuous time).- Basic functionals of the risk theory.

Reihe/Serie Problem Books in Mathematics
Zusatzinfo 8 Illustrations, black and white; XII, 376 p. 8 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Financial Mathematics • processes • risk theory • stochastic
ISBN-10 1-4614-2506-9 / 1461425069
ISBN-13 978-1-4614-2506-9 / 9781461425069
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99