Mr. Carter has over fifty five years' experience in domestic and international engineering and management positions in the area of drilling, completion and E&P waste management with Conoco, Baroid, and several other drilling contractors. He has conducted seminars and schools on fluids, rig equipment, and drilling engineering related subjects associated with drilling optimization, cost reduction, and well control. Tom has served as Chairman of the API standardization committee (SC 13) on Drilling and Completion Fluid Materials. He was a SPE Distinguished Lecturer in 1993 and served as the Editor of the SPE reprint series book on drilling fluids. Currently, he is a member of the Chevron Clear Leader Center serving as a Technical Learning Advisor in Houston. He coordinates and has teaching participation in several subject areas such as Coiled Tubing Operations, Directional Drilling, Drilling Fluids, Drilling Practices, Fundamentals for Drilling and Completion, HPHT Drilling and Completions, and Solids Control and Waste Management. He is still active in several industry organizations and was President of the Houston chapter of the American Association of Drilling Engineers, Coordinator for the SPE North American Forum Series, Membership Chairman of the editorial committee for the Journal of Petroleum Technology and on the Board of Directors for the Ocean Energy Center Society (Ocean Star rig museum in Galveston). He has published 20 technical publications and holds five U.S. patents. He graduated with a BS in Geology from Centenary College in Shreveport, Louisiana in 1963.
Formulas and Calculations for Drilling, Production, and Workover: All the Formulas You Need to Solve Drilling and Production Problems, Third Edition, provides a convenient source of reference for oil field workers who do not use formulas and calculations on a regular basis. This book is still intended for the entirety of their careers. It also aims to help reduce the volume of materials they must carry to the rig floor or job site. Starting with review of basic equations and basic calculations, the remaining chapters offer in-depth discussions of topics such as drilling fluids, pressure control, engineering calculations, and air and gas calculations. The formulas and calculations are provided in either English field units or in metric units. This edition includes the Volumetric Procedure, the Lubricate and Bleed Procedure (both Volume and Pressure Methods), and stripping procedures (both the Strip and Bleed Procedure and the Combined Stripping and Volumetric Procedure). The Table of Contents and the Index make looking up formulas and calculations quick and easy. Examples are used throughout to make the formulas as easy as possible to understand and work, and often exact words are used rather than symbols. - Back-of-the envelope calculations that save time and money- Easily evaluate the performance of your well- Confidently design or redesign operations that will improve production- Handle special production projects with ease
Front Cover 1
Formulas and Calculations for Drilling, Production, and Workover: All the Formulas You Need to Solve Drilling and Production Problems 4
Copyright 5
Contents 6
Preface 10
Chapter 1: Basic Equations 12
1.0. Terminology 12
1.1. Mud Weight MW (lb/ft3), Mud Weight MW (ppg), and Specific Gravity (SG) [USCS/British] 12
1.2. Density . (kg/m3 or kg/liter), Mud Weight MW (N/m3 or N/liter), and Specific Gravity (SG) [SI-Metric] 13
1.3. Hydrostatic Pressure (P) and (p) [USCS/British] 15
1.4. Hydrostatic Pressure (P) and (p) [SI-Metric] 16
1.5. Pressure Gradient (psi/ft), G (ppg) [USCS/British] 18
1.6. Pressure Gradient G (SG) [SI-Metric] 19
1.7. Equivalent Circulating "Density" ECD (ppg) [USCS/British] 20
1.8. Equivalent Circulating "Density" ECD (N/liter) and ECD (SG) [SI-Metric] 20
1.9. Mud Pump Output Q (bbl/stk) and q (gpm) [USCS/British] 21
1.9.1. Triplex Pump 21
1.9.2. Duplex Pump 22
1.9.3. Hydraulic Horsepower 23
1.10. Capacity Formulas 24
1.10.1. Annular Capacity between Casing or Hole and Drill Pipe, Tubing, or Casing 24
1.10.2. Annular Capacity between Casing and Multiple Strings of Tubing 26
1.10.3. Capacity of Tubulars and Open Hole: Drill Pipe, Drill Collars, Tubing, Casing, Hole, and Any Cylindrical Object 29
1.10.4. Amount of Cuttings Drilled per Foot of Hole Drilled 30
1.11. Annular Velocity Van (ft/min) 32
Metric Calculations 33
SI Unit Calculations 33
1.12. Strokes per Minute (SPM) Required for a Given Annular Velocity 34
1.13. Control Drilling 35
1.14. Buoyancy Factor (BF) 35
1.15. Decrease When Pulling Pipe Out of the Hole 36
1.15.1. When Pulling DRY Pipe 36
1.15.2. When Pulling WET Pipe 37
1.16. Loss of Overbalance Due to Falling Mud Level 38
1.16.1. Feet of Pipe Pulled DRY to Lost Overbalance 38
1.16.2. Feet of Pipe Pulled WET to Lose Overbalance 38
Metric Calculations 39
SI Unit Calculations 40
Formation Temperature (Tf) 40
1.17. Circulating Hydraulic Horsepower (HHP) 40
1.17.1. Rule of Thumb Formulas 42
1.18. Pump Pressure/Pump Stroke Relationship (the Roughneck's Formula) 42
Metric Calculation 44
SI Unit Calculation 44
1.19. Cost per Foot 44
1.20. Temperature Conversion Formulas 44
Convert Temperature, Fahrenheit (F) to Centigrade or Celsius (C) 44
Convert Temperature, Centigrade or Celsius (C) to Fahrenheit 45
Convert Temperature, Centigrade, Celsius (C) to Kelvin (K) 45
Convert Temperature, Fahrenheit (F) to Rankine (R) 45
Rule of Thumb Formulas for Temperature Conversion 45
Chapter 2: Basic Calculations 48
2.0. Capacity, Volumes, and Strokes 53
2.0.1. Capacity of Drill Pipe, HWDP, Casing, or Open Hole in bbl/ft 53
2.0.2. Capacity of Casing or Open Hole between Drill Pipe, HWDP, or Casing in bbl/ft 53
2.0.3. Capacity of Drill Pipe, HWDP, Casing, or Open Hole in ft/bbl 53
2.0.4. Capacity of Casing or Open Hole between Drill Pipe, HWDP, or Casing in ft/bbl 54
2.0.5. Volume of Drill Pipe, HWDP, Drill Collar, or Casing in bbl 54
2.0.6. Volume between Drill Pipe, HWDP, or Casing, and the Casing or Open Hole in bbl 54
2.0.7. Strokes to Displace the Drill String, Annulus, and Total Circulation from the Rotary Table to the Flowline 57
2.1. Slug Calculations 60
2.1.1. Barrels of Slug Required for a Desired Length of Dry Pipe 60
2.1.2. Weight of Slug Required for a Desired Length of Dry Pipe with a Set Volume of Slug 61
2.1.3. Volume, Height, and Pressure Gained Because of Placement of Slug in Drill Pipe 62
2.1.4. English Units Calculation 64
2.1.5. SI Calculation 65
2.2. Accumulator Capacity 65
2.2.1. Useable Volume per Bottle 65
2.2.2. Surface Application 65
2.2.3. English Units 66
2.2.4. Deepwater Applications 67
2.2.5. Accumulator Precharge Pressure 68
2.3. Bulk Density of Cuttings (Using Mud Balance) 68
2.4. Drill String Design (Limitations) 69
2.4.1. Calculate the Length of BHA Necessary for a Desired Weight on the Bit 69
2.4.2. Calculate the Feet of Drill Pipe That Can Be Used with a Specific Bottomhole Assembly (BHA) 70
2.5. Ton-Mile (TM) Calculations 72
2.5.1. Round Trip Ton-Miles (RTTM) 72
2.5.2. Drilling or "Connection" Ton-Miles 73
2.5.3. Ton-Miles during Coring Operations 74
2.5.4. Ton-Miles Setting Casing 75
2.5.5. Ton-Miles While Making Short Trips 75
2.5.6. Cutoff Practices for Rotary Drilling Line 75
2.5.7. Calculate the Length of Drill Line Cutoff 76
2.6. Cementing Calculations 77
2.6.1. Cement Additive Calculations 77
2.6.2. Water Requirements 79
2.6.3. Field Cement Additive Calculations 80
2.6.4. Weighted Cement Calculations 83
2.6.5. Calculations for the Number of Sacks of Cement Required 84
2.6.6. Calculations for the Number of Feet to Be Cemented 87
2.6.7. Setting a Balanced Cement Plug 90
2.6.8. Differential Hydrostatic Pressure between Cement in the Annulus and Mud inside the Casing 95
2.6.9. Hydraulicing Casing 97
2.7. Depth of a Washout 100
2.8. Lost Returns-Loss of Overbalance 102
2.9. Stuck Pipe Calculations 103
2.9.1. Determine the Length of Free Pipe in Feet and the Free Point Constant 103
2.10. Calculations Required for Placing Spotting Pills in an Open Hole Annulus 107
2.10.1. Calculate the Amount of Spotting Fluid Pill in Barrels Required to Cover the Stuck Point of the Drill String or Casin 107
2.10.2. Determine the Length of an Unweighted Spotting Fluid Pill That Will Balance Formation Pressure in the Annulus in Feet 111
2.11. Pressure Required to Break Circulation 112
2.11.1. Pressure Required to Break the Mud's Gel Strength inside the Drill String in psi 112
2.11.2. Calculate the Effective Gel Strength Based on the Actual Pressure Required to Break the Circulation 114
References 114
Chapter 3: Drilling Fluids 116
3.0. Mud Density Increase and Volume Change 118
3.0.1. Increase Mud Density with No Base Liquid Added and No Volume Limit 118
3.0.2. Increase Mud Weight with No Base Liquid Added but Limit Final Volume 120
3.0.3. Increase the Mud Density with Base Liquid Added and No Volume Limit 121
3.0.4. Increase Mud Weight with Base Liquid Added but Limit Final Volume 123
3.0.5. Increase Mud Weight with Base Liquid Added but Limit Final Volume and Limited Weight Material Inventory 124
3.0.6. Increase Mud Weight to a Maximum Mud Weight with Base Liquid Added but with Limited Weight Material Inventory 126
3.0.7. SI Unit Calculation 127
3.1. Mud Weight Reduction with Base Liquid Dilution 127
3.1.1. Mud Weight Reduction with Base Liquid 127
3.2. Mixing Fluids of Different Densities 129
3.2.1. The Material Balance Formula 129
3.3. Oil-Based Mud Calculations 130
3.3.1. Calculate the Starting Volume of Liquid (Base Oil plus Water) Required to Prepare a Desired Final Volume of Mud 130
3.3.2. Oil/Water Ratio from Retort Data 131
3.3.3. Change the OWR 132
3.4. Solids Analysis 134
3.5. Solids Fractions (Barite-Treated Muds) 139
3.5.1. Calculate the Maximum Recommended Solids Fraction in Percent (%) Based on the Mud Weight 139
3.5.2. Calculate the Maximum Recommended Low Gravity Solids (LGS) Fraction in Percent (%) Based on the Mud Weight 139
3.6. Dilution of Mud System 140
3.6.1. Calculate the Volume of Dilution in bbls Required to Reduce the Solids Content in the Mud System 140
3.6.2. Displacement-Barrels of Water/Slurry Required 141
3.7. Evaluation of Hydrocyclones 142
3.7.1. Calculate the Mass of Solids (for an Unweighted Mud) and the Volume of Water Discarded by One Cone of a Hydrocyclone ( 142
3.7.2. Calculate the Mass Rate of Solids in gal/hr 142
3.7.3. Calculate the Volume of Liquid Ejected by One Cone of a Hydrocyclone in gal/hr 142
3.8. Evaluation of Centrifuge 143
3.8.1. Evaluate the Centrifuge Underflow 143
References 147
Chapter 4: Pressure Control... 148
4.0. Normal Kill Sheet 148
Prerecorded Data 148
Drill String Volume 148
Annular Volume 148
Pump Data 149
Kick Data 149
4.1. Calculations 149
Kill Weight Mud (KWM) 149
Initial Circulating Pressure (ICP) 149
Final Circulating Pressure (FCP) 150
Psi/Stroke 150
Drill String Volume 151
Annular Volume 151
Strokes to Bit 151
Bit-to-Casing Strokes 152
Bit-to-Surface Strokes 152
Kill Weight Mud (KWM) 152
Initial Circulating Pressure (ICP) 152
Final Circulating Pressure (FCP) 152
Pressure Chart 152
Pressure 153
Trip Margin (TM) 153
Determine psi/stk 153
4.2. Kill Sheet with a Tapered String 155
Data from Kill Sheet 156
4.3. Kill Sheet for a Highly Deviated Well 157
4.4. Prerecorded Information 161
Maximum Anticipated Surface Pressure 161
Sizing Diverter Lines 163
Formation Pressure Tests 163
Maximum Allowable Mud Weight from Leak-Off Test Data 166
Maximum Allowable Shut-In Casing Pressure (MASICP), Also Called Maximum Allowable Shut-In Annular Pressure (MASP) 166
Kick Tolerance Factor (KTF) 166
Maximum Surface Pressure from Kick Tolerance Data 167
Maximum Formation Pressure (FP) That Can Be Controlled when Shutting in a Well 167
Maximum Influx Height Possible to Equal Maximum Allowable Shut-In Casing Pressure (MASICP) 168
Maximum Influx, Barrels to Equal Maximum Allowable Shut-In Casing Pressure (MASICP) 168
Adjusting Maximum Allowable Shut-In Casing Pressure for an Increase in Mud Weight 169
4.5. Kick Analysis 170
Formation Pressure (FP) with the Well Shut-In on a Kick 170
Bottomhole Pressure (BHP) with the Well Shut-In on a Kick 170
Shut-In Drill Pipe Pressure (SIDPP) 170
Shut-In Casing Pressure (SICP) 171
Height, ft, of Influx 171
Estimated Type of Influx 173
Gas Migration in a Shut-In Well 173
Metric Calculation 174
SI Units Calculation 174
Hydrostatic Pressure Decrease at TD Caused by Gas-Cut Mud Method 1 175
Maximum Surface Pressure from a Gas Kick in a Water-Base Mud 175
Maximum Pit Gain from Gas Kick in a Water-Base Mud 176
Maximum Pressures when Circulating Out a Kick (Moore Equations) 177
Gas Flow into the Wellbore 183
4.6. Pressure Analysis 183
Gas Expansion Equations 183
Hydrostatic Pressure Exerted by Each Barrel of Mud in the Casing 184
Surface Pressure during Drill Stem Tests 185
4.7. Stripping/Snubbing Calculations 186
Breakover Point between Stripping and Snubbing 186
Minimum Surface Pressure before Stripping Is Possible 187
Height Gain from Stripping into Influx 187
Casing Pressure Increase from Stripping into Influx 188
Volume of Mud That Must Be Bled to Maintain Constant Bottomhole Pressure with a Gas Bubble Rising 188
Maximum Allowable Surface Pressure (MASP) Governed by the Formation from Equation (4.22) 189
Maximum Allowable Surface Pressure (MASP) Governed by Casing Burst Pressure 190
4.8. Subsea Considerations 190
Casing Pressure Decrease When Bringing Well on Choke 190
Pressure Chart for Bringing Well on Choke 191
Maximum Allowable Mud Weight, ppg, Subsea Stack as Derived from Leak-Off Test Data 192
Maximum Allowable Shut-In Casing (Annulus) Pressure from Equation (4.22) 192
Casing Burst Pressure-Subsea Stack 193
Velocity, ft/min, through the Choke Line 195
Adjusting Choke Line Pressure Loss for a Higher Mud Weight 195
Minimum Conductor Casing Setting Depth 196
Maximum Mud Weight with Returns Back to Rig Floor 197
Reduction in Bottomhole Pressure if Riser Is Disconnected 197
Bottomhole Pressure When Circulating Out a Kick 198
4.9. Workover Operations 199
Bullheading 199
Lubricate and Bleed 202
4.10. Controlling Gas Migration 204
Drill Pipe Pressure Method 205
SI Units 205
Metric Units 205
Volumetric Method of Gas Migration 206
SI Units 206
Metric Units 206
4.11. Gas Lubrication 207
Gas Lubrication-Volume Method 207
SI Units 207
Metric Units 208
Gas Lubrication-Pressure Method 208
4.12. Annular Stripping Procedures 209
Strip and Bleed Procedure 209
Combined Stripping/Volumetric Procedure 210
4.13. Worksheet 210
References 211
Chapter 5: Engineering Calculations 214
5.0. Bit Nozzle Selection-Optimized Hydraulics 214
5.1. Hydraulics Analysis 220
5.2. Critical Annular Velocity and Critical Flow Rate 223
5.3. The "d" Exponent 225
5.4. Cuttings Slip Velocity 226
5.5. Surge and Swab Pressures 231
5.6. Equivalent Circulation Density (ECD) 240
5.7. Fracture Gradient Determination-Surface Applications 244
5.8. Fracture Gradient Determination-Subsea Applications 248
5.9. Directional Drilling Calculations 251
5.9.1. Directional Survey Calculations 251
5.9.2. Deviation/Departure Calculation 254
5.9.3. Dogleg Severity Calculation 255
5.9.4. Available Weight on the Bit in Directional Wells 256
5.9.5. Determining True Vertical Depth 257
5.10. Miscellaneous Equations and Calculations 258
5.10.1. Surface Equipment Pressure Losses 258
5.10.2. Drill Stem Bore Pressure Losses 258
5.10.3. Annular Pressure Losses 259
5.10.4. Pressure Loss through Common Pipe Fittings 260
5.10.5. Minimum Flow Rate for PDC Bits 261
5.10.6. Critical RPM: RPM to Avoid Due to Excessive Vibration (Accurate to Approximately 15%) 261
References 262
Chapter 6: Air and Gas Calculations 264
Appendix A 278
Tank Capacity Determinations 279
Rectangular Tanks with Flat Bottoms 279
Rectangular Tanks with Sloping Sides 280
Circular Cylindrical Tanks 283
Tapered Cylindrical Tanks 283
Horizontal Cylindrical Tank 284
Appendix B 286
Appendix C: Average Annual Atmospheric Conditions 290
Index 296
Basic Equations
Publisher Summary
This chapter introduces the concept of density in oil field terminology, which refers to specific weight. Specific weight is in the units of lb/ft3 or lb/gallon (ppg). This chapter refers to the specific weight as mud weight. Density is used only when referring to the SI-metric values of kg/m3, kg/liter, and gram/cm3 (which are actual density values in that unit system) and for the term ECD. This chapter describes the mud weight, and specific gravity in USCS/British units and SI units. Following this, it provides an understanding of hydrostatic pressure using formulae and equations. It also explains pressure gradient in USCS/British units and SI units. Furthermore, it explains some capacity formulas for annular capacity between casing or hole and drill pipe, tubing, or casing. Finally, it illustrates some temperature and conversion formulas.
This chapter introduces the various units of weight that are used in the drilling profession. The use of the term density in the book is explained as it pertains to the calculations presented in the book. Basic equations for mud weight and specific gravity are presented.
Key Words: Mud weight, density, specific gravity, SI units, hydrostatic pressure, Rankine
1.0 Terminology
The term density as used in USCS/British oil field terminology is a slang term for a value that is actually specific weight. Specific weight is in the units of lb/ft3 or lb/gallon (ppg). Actual density in the USCS/British would be the specific weight term divided by 32.2 ft/sec2 and would result in a USCS/British density of slug/ft3. Neither the density term nor the actual density term is used in this book. This book uses the term mud weight (MW) for specific weight (lb/ft3or ppg). Density is used only when referring to the SI-metric values of kg/m3, kg/liter, and gram/cm3 (which are actual density values in that unit system) and for the term ECD.
1.1 Mud Weight MW (lb/ft3), Mud Weight MW (ppg), and Specific Gravity (SG) [USCS/British]
Definition: Mud weight of fresh water MW (lb/ft3)
fw=62.4lb/ft3 (1.1)
Example: Mud weight of fresh water MW (ppg)
fw=62.4(12)3(231)MWfw=8.34ppg (1.2)
where: 1 gal = 231 in.3
1 ft = 12 in.
Example: Specific gravity of fresh water SG
fw=62.462.4=1.0 (1.3)
or
fw=8.348.34=1.0 (1.4)
Example: SG of a mud weight of 12.0 ppg
m=12.08.34=1.44 (1.5)
1.2 Density ρ (kg/m3 or kg/liter), Mud Weight MW (N/m3 or N/liter), and Specific Gravity (SG) [SI-Metric]
Definition: Mud density of fresh water ρ (kg/m3)
fw=1000.0kg/m3 (1.6)
Example: Mud density of fresh water ρ (kg/liter)
fw=1000.0(10-3)ρfw=1.0kg/liter
where: 1 liter = 10−3 m3
Example: Mud weight of fresh water MW (N/m3)
fw=1000.0g=1000.09.81MWfw=9810.0N/m3
where: g = 9.81 m/sec2
Example: Mud weight of fresh water MW (N/liter)
fw=1.0g=1.09.81MWfw=9.81N/liter
Example: Specific gravity of fresh water SG (using density)
fw=1000.01000.0=1.0
or
fw=1.01.0=1.0
Example: Specific gravity of fresh water SG (using mud weight)
fw=9810.09810.0=1.0
or
fw=9.819.81=1.0
Conversion: Mud weight of 12.0 ppg to mud weight MW (N/liter)
=12.0(1.175)=14.1N/liter (1.7)
where: 1 ppg = 1.175 N/liter
Example: Mud weight of 14.1 N/liter to density ρ (kg/liter)
m=14.11g=1.44kg/liter
Example: SG of mud using density of 1.44 kg/liter
m=1.441.0=1.44
Example: SG of a mud with a specific weight of 14.1 N/liter
m=14.19.81=1.44
Table 1-1
Mud Weight and Density Conversion Factors Summary
lb/ft3 | lb/gal | 0.134 |
lb/ft3 | SG | (1/62.4) |
lb/gal | SG | (1/8.34) |
kg/m3 | N/m3 | 9.81 |
kg/liter | N/liter | 9.81 |
kg/m3 | N/liter | (9.81/1000) |
N/liter | SG | (1/9.81) |
N/m3 | SG | (1/9810) |
1.3 Hydrostatic Pressure (P) and (p) [USCS/British]
Definition: Hydrostatic pressure P (lb/ft3) at a depth H (ft) below surface is
(lb/ft2)=MW(lb/ft3)H(ft) (1.8)
where: H (ft) is true vertical depth (TVD)
Example: Pressure (lb/ft2) in fresh water at a depth of 1000 ft
=62.41000=62,400lb/ft2
Example: Pressure (lb/ft2) in 12.0 ppg at a depth of 1000 ft
=(89.9)(1000)=89,900lb/ft2
Definition: Hydrostatic pressure p (psi) at a depth H (ft) below surface is (using equation (1.8))
psi122=MWlb/ft3Hft
which reduces to
(psi)=MW(lb/ft3)1(12)2H(ft)
or
(psi)=0.00695MW(lb/ft3)H(ft) (1.9)
Example: Pressure (psi) in fresh water at a depth of 1000 ft
=0.00695(62.4)(1000)=434psi
Example: Pressure (psi) in 12.0 ppg at a depth of 1000 ft
=0.00695(89.9)(1000)=624psi
Definition: Hydrostatic pressure p (psi) at a depth H (ft) below surface is (using equation (1.8))
(psi)(12)2=MW(ppg)(12)3231H(ft)
which reduces to
(psi)=MW(ppg)12231H(ft)
or
(psi)=0.052MW(ppg)H(ft) (1.10)
Example: Pressure (psi) in fresh water at a depth of 1000 ft
=0.052(8.34)(1000)=434psi
Example: Pressure (psi) in 12.0 ppg mud at a depth of 1000 ft
=0.052(12.0)(1000)=624psi
1.4 Hydrostatic Pressure (P) and (p) [SI-Metric]
Definition: Hydrostatic pressure P (N/m2) at a depth H (m) below surface is (using N/m3)
(N/m2)=MW(N/m3)H(m) (1.11)
Example: Pressure (N/m2) in fresh water at a depth of 305 m (~ 1000 ft)
=(9810)(305)=2,992,050N/m2
Definition: Hydrostatic pressure P (N/m2) at a depth H (m) below surface is (using N/liter)
(N/m2)=1000MW(N/liter)H(m) (1.12)
Example: Pressure (N/m2) in fresh water at a depth of 305 m (~ 1000 ft)
=1000(9.81)(305)=2,992,050N/m2
Definition: Hydrostatic pressure P (N/m2) at a depth H (m) below surface is (using SG)
(N/m2)=SGMWfw(N/m3)H(m) (1.13)
or
(N/m2)=1000SGMWfw(N/liter)H(m) (1.14)
Example: Pressure (N/m2) in fresh water at a depth of 305 m (~ 1000 ft)
=1000(1.0)(9.81)(305)=2,992,050N/m2
Example: Pressure (N/m2) in mud with an SGm of 1.44 at a depth of 305 m (~ 1000 ft)
=1000(1.44)(9.81)(305)=4,308,552N/m2
Definition: Hydrostatic pressure p (N/cm2) at a depth H (m) below surface is (using SG)
(N/cm2)=10−4SGMWfw(N/m3)H(m) (1.15)
Example: Pressure (N/cm2) in fresh water at a depth of 305 m (~ 1000 ft)
=10−41.09810305=299N/cm2
Example: Pressure (N/cm2) in mud with an SG of 1.44 at a depth of 305 m (~ 1000 ft)
=10−41.449810305=431N/cm2
NOTE: The values of p (N/cm2) are 0.69 of the values of p (psi).
1.5 Pressure Gradient ∇ (psi/ft), G (ppg) [USCS/British]
Definition: Pressure gradient ∇ (psi/ft) is obtained from equation (1.10)
(psi/ft)=p(psi)H(ft)=0.052MW(ppg)∇(psi/ft)=0.052MW(ppg) (1.16)
Example: Pressure gradient ∇fw (psi/ft) for fresh water
fw=0.0528.34∇fw=0.434psi/ft
Example: Pressure gradient ∇m (psi/ft) for 12.0 ppg...
Erscheint lt. Verlag | 20.9.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Bauwesen | |
Technik ► Bergbau | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 1-85617-930-3 / 1856179303 |
ISBN-13 | 978-1-85617-930-0 / 9781856179300 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 7,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich