Data Mining and Knowledge Discovery Handbook -

Data Mining and Knowledge Discovery Handbook (eBook)

Oded Maimon, Lior Rokach (Herausgeber)

eBook Download: PDF
2006 | 2005
XXXVI, 1383 Seiten
Springer US (Verlag)
978-0-387-25465-4 (ISBN)
Systemvoraussetzungen
229,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository.

This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security.

Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.


Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security.Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Introduction to knowledge discovery in databases.- Part I Preprocessing methods.- Data cleansing.- Handling missing attribute values.- Geometric methods for feature extraction and dimensional reduction.- Dimension Reduction and feature selection.- Discretization methods.- outlier detection.- Part II Supervised methods.- Introduction to supervised methods.- Decision trees.- Bayesian networks.- Data mining within a regression framework.- Support vector machines.- Rule induction.- Part III Unsupervised methods.- Visualization and data mining for high dimensional datasets.- Clustering methods.- Association rules.- Frequent set mining.- Constraint-based data mining.- Link analysis.- Part IV Soft computing methods.- Evolutionary algorithms for data mining.- Reinforcement-learning: an overview from a data mining perspective.- Neural networks.- On the use of fuzzy logic in data mining.- Granular computing and rough sets.- Part V Supporting methods.- Statistical methods for data mining.- Logics for data mining.- Wavelet methods in data mining.- Fractal mining.- Interestingness measures.- Quality assessment approaches in data mining.- Data mining model comparison.- Data mining query languages.- Part VI Advanced methods.- Meta-learning.- Bias vs variance decomposition for regression and classification.- Mining with rare cases.- Mining data streams.- Mining high-dimensional data.- Text mining and information extraction.- Spatial data mining.- Data mining for imbalanced datasets: an overview.- Relational data mining.- Web mining.- A review of web document clustering approaches.- Causal discovery.- Ensemble methods for classifiers.- Decomposition methodology for knowledge discovery and data mining.- Information fusion.- Parallel and grid-based data mining.- Collaborative data mining.- Organizational data mining.- Mining time series data.- Part VII Applications.- Data mining in medicine.- Learning information patterns in biological databases.- Data mining for selection of manufacturing processes.- Data mining of design products and processes.- Data mining in telecommunications.- Data mining for financial applications.- Data mining for intrusion detection.- Data mining for software testing.- Data mining for CRM.- Data mining for target marketing.- Part VIII Software.- Oracle data mining.- Building data mining solutions with OLE DB for DM and XML for analysis.- LERS—A data mining system.- GainSmarts data mining system for marketing.- WizSoft’s WizWhy.- DataEngine.- Index.

Erscheint lt. Verlag 28.5.2006
Zusatzinfo XXXVI, 1383 p. 400 illus.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Grafik / Design
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte algorithm • Bayesian networks • currentjm • Data Mining • data mining applications • decision trees • ensemble method • KAP_D018 • KDD • KLT • KLTcatalog • Knowledge Discovery • large datasets • preprocessing method • soft computing method • statistical method • text min
ISBN-10 0-387-25465-X / 038725465X
ISBN-13 978-0-387-25465-4 / 9780387254654
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 257,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
49,90