Random Matrices, Random Processes and Integrable Systems -

Random Matrices, Random Processes and Integrable Systems (eBook)

John Harnad (Herausgeber)

eBook Download: PDF
2011 | 2011
XVIII, 526 Seiten
Springer New York (Verlag)
978-1-4419-9514-8 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the 'Dyson processes', and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods.

Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.


This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "e;Dyson processes"e;, and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.

Introduction by John HarnadPart I Random Matrices, Random Processes and Integrable ModelsChapter 1 Random and Integrable Models in Mathematics and Physics by Pierre van MoerbekeChapter 2 Integrable Systems, Random Matrices, and Random Processes by Mark Adler Part II Random Matrices and ApplicationsChapter 3 Integral Operators in Random Matrix Theory by Harold WidomChapter 4 Lectures on Random Matrix Models by Pavel M. BleherChapter 5 Large N Asymptotics in Random Matrices by Alexander R. ItsChapter 6 Formal Matrix Integrals and Combinatorics of Maps by B. EynardChapter 7 Application of Random Matrix Theory to Multivariate Statistics by Momar Dieng and Craig A. Tracy

Erscheint lt. Verlag 6.5.2011
Reihe/Serie CRM Series in Mathematical Physics
CRM Series in Mathematical Physics
Zusatzinfo XVIII, 526 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik
Schlagworte Integrable Systems • nonlinear steepest descent • random growth models • random matrices • random processes • random sequences • Riemann-Hibert method
ISBN-10 1-4419-9514-5 / 1441995145
ISBN-13 978-1-4419-9514-8 / 9781441995148
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich