*Provides complete coverage of the latest techniques used for designing and analyzing petroleum production systems
*Increases efficiency and addresses common problems by utilizing the computer-based solutions discussed within the book
* Presents principles of designing and selecting the main components of petroleum production systems
A professor of petroleum and natural gas engineering at the New Mexico Institute of Mining and Technology, Socorro, New Mexico.
Petroleum Production Engineering, A Computer-Assisted Approach provides handy guidelines to designing, analyzing and optimizing petroleum production systems. Broken into four parts, this book covers the full scope of petroleum production engineering, featuring stepwise calculations and computer-based spreadsheet programs. Part one contains discussions of petroleum production engineering fundamentals, empirical models for production decline analysis, and the performance of oil and natural gas wells. Part two presents principles of designing and selecting the main components of petroleum production systems including: well tubing, separation and dehydration systems, liquid pumps, gas compressors, and pipelines for oil and gas transportation. Part three introduces artificial lift methods, including sucker rod pumping systems, gas lift technology, electrical submersible pumps and other artificial lift systems. Part four is comprised of production enhancement techniques including, identifying well problems, designing acidizing jobs, guidelines to hydraulic fracturing and job evaluation techniques, and production optimization techniques. Provides complete coverage of the latest techniques used for designing and analyzing petroleum production systems Increases efficiency and addresses common problems by utilizing the computer-based solutions discussed within the book Presents principles of designing and selecting the main components of petroleum production systems
Cover 1
Petroleum Production Engineering 4
Copyright Page 5
Dedication Page 6
Contents 8
Preface 10
List of Symbols 12
List of Tables 16
List of Figures 18
Part I: Petroleum Production Engineering Fundamentals 22
Chapter 1: Petroleum Production System 24
1.1 Introduction 25
1.2 Reservoir 25
1.3 Well 26
1.4 Separator 29
1.5 Pump 30
1.6 Gas Compressor 31
1.7 Pipelines 32
1.8 Safety Control System 32
1.9 Unit Systems 38
Summary 38
References 38
Problems 38
Chapter 2: Properties of Oil and Natural Gas 40
2.1 Introduction 41
2.2 Properties of Oil 41
2.3 Properties of Natural Gas 42
Summary 47
References 47
Problems 47
Chapter 3: Reservoir Deliverability 50
3.1 Introduction 51
3.2 Flow Regimes 51
3.3 Inflow Performance Relationship 53
3.4 Construction of IPR Curves Using Test Points 56
3.5 Composite IPR of Stratified Reservoirs 58
3.6 Future IPR 60
Summary 63
References 63
Problems 64
Chapter 4: Wellbore Performance 66
4.1 Introduction 67
4.2 Single-Phase Liquid Flow 67
4.3 Multiphase Flow in Oil Wells 69
4.4 Single-Phase Gas Flow 74
4.5 Mist Flow in Gas Wells 77
Summary 77
References 78
Problems 78
Chapter 5: Choke Performance 80
5.1 Introduction 81
5.2 Sonic and Subsonic Flow 81
5.3 Single-Phase Liquid Flow 81
5.4 Single-Phase Gas Flow 81
5.5 Multiphase Flow 84
Summary 87
References 87
Problems 87
Chapter 6: Well Deliverability 90
6.1 Introduction 91
6.2 Nodal Analysis 91
6.3 Deliverability of Multilateral Well 100
Summary 105
References 106
Problems 106
Chapter 7: Forecast of Well Production 108
7.1 Introduction 109
7.2 Oil Production during Transient Flow Period 109
7.3 Oil Production during Pseudo–Steady Flow Period 109
7.4 Gas Production during Transient Flow Period 113
7.5 Gas Production during Pseudo–Steady-State Flow Period 113
Summary 115
References 115
Problems 116
Chapter 8: Production Decline Analysis 118
8.1 Introduction 119
8.2 Exponential Decline 119
8.3 Harmonic Decline 121
8.4 Hyperbolic Decline 121
8.5 Model Identification 121
8.6 Determination of Model Parameters 122
8.7 Illustrative Examples 122
Summary 125
References 125
Problems 125
Part II: Equipment Design and Selection 128
Chapter 9: Well Tubing 130
9.1 Introduction 131
9.2 Strength of Tubing 131
9.3 Tubing Design 132
Summary 135
References 135
Problems 135
Chapter 10: Separation Systems 138
10.1 Introduction 139
10.2 Separation System 139
10.3 Dehydration System 146
Summary 153
References 153
Problems 153
Chapter 11: Transportation Systems 154
11.1 Introduction 155
11.2 Pumps 155
11.3 Compressors 157
11.4 Pipelines 164
Summary 177
References 178
Problems 178
Part III: Artificial Lift Methods 180
Chapter 12: Sucker Rod Pumping 182
12.1 Introduction 183
12.2 Pumping System 183
12.3 Polished Rod Motion 186
12.4 Load to the Pumping Unit 189
12.5 Pump Deliverability and Power Requirements 191
12.6 Procedure for Pumping Unit Selection 193
12.7 Principles of Pump Performance Analysis 195
Summary 200
References 200
Problems 200
Chapter 13: Gas Lift 202
13.1 Introduction 203
13.2 Gas Lift System 203
13.3 Evaluation of Gas Lift Potential 204
13.4 Gas Lift Gas Compression Requirements 206
13.5 Selection of Gas Lift Valves 213
13.6 Special Issues in Intermittent-Flow Gas Lift 222
13.7 Design of Gas Lift Installations 224
Summary 226
References 226
Problems 226
Chapter 14: Other Artificial Lift Methods 228
14.1 Introduction 229
14.2 Electrical Submersible Pump 229
14.3 Hydraulic Piston Pumping 232
14.4 Progressive Cavity Pumping 234
14.5 Plunger Lift 236
14.6 Hydraulic Jet Pumping 241
Summary 243
References 243
Problems 244
Part IV: Production Enhancement 246
Chapter15: Well Problem Identification 248
15.1 Introduction 249
15.2 Low Productivity 249
15.3 Excessive Gas Production 252
15.4 Excessive Water Production 252
15.5 Liquid Loading of Gas Wells 252
Summary 262
References 262
Problems 263
Chapter 16: Matrix Acidizing 264
16.1 Introduction 265
16.2 Acid–Rock Interaction 265
16.3 Sandstone Acidizing Design 265
16.4 Carbonate Acidizing Design 268
Summary 269
References 269
Problems 270
Chapter 17: Hydraulic Fracturing 272
17.1 Introduction 273
17.2 Formation Fracturing Pressure 273
17.3 Fracture Geometry 275
17.4 Productivity of Fractured Wells 277
17.5 Hydraulic Fracturing Design 279
17.6 Post-Frac Evaluation 283
Summary 285
References 285
Problems 286
Chapter 18: Production Optimization 288
18.1 Introduction 289
18.2 Naturally Flowing Well 289
18.3 Gas-Lifted Well 289
18.4 Sucker Rod–Pumped Well 290
18.5 Separator 291
18.6 Pipeline Network 293
18.7 Gas-Lift Facility 296
18.8 Oil and Gas Production Fields 297
18.9 Discounted Revenue 300
Summary 300
References 300
Problems 301
Appendices 302
Appendix A Unit Conversion Factors 303
Appendix B The Minimum Performance Properties of API Tubing 304
Index 306
List of Figures
Figure 1.1: | A sketch of a petroleum production system. |
Figure 1.2: | A typical hydrocarbon phase diagram. |
Figure 1.3: | A sketch of a water-drive reservoir. |
Figure 1.4: | A sketch of a gas-cap drive reservoir. |
Figure 1.5: | A sketch of a dissolved-gas drive reservoir. |
Figure 1.6: | A sketch of a typical flowing oil well. |
Figure 1.7: | A sketch of a wellhead. |
Figure 1.8: | A sketch of a casing head. |
Figure 1.9: | A sketch of a tubing head. |
Figure 1.10: | A sketch of a “Christmas tree.” |
Figure 1.11: | Sketch of a surface valve. |
Figure 1.12: | A sketch of a wellhead choke. |
Figure 1.13: | Conventional horizontal separator. |
Figure 1.14: | Double action piston pump. |
Figure 1.15: | Elements of a typical reciprocating compressor. |
Figure 1.16: | Uses of offshore pipelines. |
Figure 1.17: | Safety device symbols. |
Figure 1.18: | Safety system designs for surface wellhead flowlines. |
Figure 1.19: | Safety system designs for underwater wellhead flowlines. |
Figure 1.20: | Safety system design for pressure vessel. |
Figure 1.21: | Safety system design for pipeline pumps. |
Figure 1.22: | Safety system design for other pumps. |
Figure 3.1: | A sketch of a radial flow reservoir model: (a) lateral view, (b) top view. |
Figure 3.2: | A sketch of a reservoir with a constant-pressure boundary. |
Figure 3.3: | A sketch of a reservoir with no-flow boundaries. |
Figure 3.4: | (a) Shape factors for various closed drainage areas with low-aspect ratios.(b) Shape factors for closed drainage areas with high-aspect ratios. |
Figure 3.5: | A typical IPR curve for an oil well. |
Figure 3.6: | Transient IPR curve for Example Problem3.1. |
Figure 3.7: | Steady-state IPR curve for Example Problem 3.1. |
Figure 3.8: | Pseudo–steady-state IPR curve for Example Problem 3.1. |
Figure 3.9: | IPR curve for Example Problem 3.2. |
Figure 3.10: | Generalized Vogel IPR model for partial two-phase reservoirs. |
Figure 3.11: | IPR curve for Example Problem 3.3. |
Figure 3.12: | IPR curves for Example Problem 3.4, Well A. |
Figure 3.13: | IPR curves for Example Problem 3.4, Well B |
Figure 3.14: | IPR curves for Example Problem 3.5. |
Figure 3.15: | IPR curves of individual layers. |
Figure 3.16: | Composite IPR curve for all the layers open to flow. |
Figure 3.17: | Composite IPR curve for Group 2 (LayersB4, C1, and C2). |
Figure 3.18: | Composite IPR curve for Group 3 (LayersB1, A4, and A5). |
Figure 3.19: | IPR curves for Example Problem 3.6. |
Figure 3.20: | IPR curves for Example Problem 3.7. |
Figure 4.1: | Flow along a tubing string. |
Figure 4.2: | Darcy–Wiesbach friction factor diagram. |
Figure 4.3: | Flow regimes in gas-liquid flow. |
Figure 4.4: | Pressure traverse given by Hagedorn BrownCorreltion.xls for Example. |
Figure 4.5: | Calculated tubing pressure profile for Example Problem 4.5. |
Figure 5.1: | A typical choke performance curve. |
Figure 5.2: | Choke flow coefficient for nozzle-type chokes. |
Figure 5.3: | Choke flow coefficient for orifice-type chokes. |
Figure 6.1: | Nodal analysis for Example Problem 6.1. |
Figure 6.2: | Nodal analysis for Example Problem 6.4. |
Figure 6.3: | Nodal analysis for Example Problem 6.5. |
Figure 6.4: | Nodal analysis for Example Problem 6.6. |
Figure 6.5: | Nodal analysis for Example Problem 6.8. |
Figure 6.6: | Schematic of a multilateral well trajectory. |
Figure 6.7: | Nomenclature of a multilateral well. |
Figure 7.1: | Nodal analysis plot for Example Problem 7.1. |
Figure 7.2: | Production forecast for Example Problem 7.2. |
Figure 7.3: | Nodal analysis plot for Example Problem 7.2. |
Figure 7.4: | Production forecast for Example Problem 7.2 |
Figure 7.3: | Production forecast for Example Problem 7.3. |
Figure 7.4: | Result of production forecast for Example Problem 7.4. |
Figure 8.1: | A semilog plot of q versus t indicating an exponential decline. |
Figure 8.2: | A plot of Np versus q indicating an exponential decline. |
Figure 8.3: | A plot of log(q) versus log(t) indicating a harmonic decline. |
Figure 8.4: | A plot of Np versus log(q) indicating a harmonic decline. |
Figure 8.5: | A plot of relative decline rate versus production rate. |
Figure 8.6: | Procedure for determining a- and b-values. |
Figure 8.7: | A plot of log(q) versus t showing an exponential decline. |
Figure 8.8: | Relative decline rate plot showing exponential decline. |
Figure 8.9: | Projected production rate by an exponential decline model. |
Figure 8.10: | Relative decline rate plot showing harmonic decline. |
Figure 8.11: | Projected production rate by a harmonic decline model. |
Figure 8.12: | Relative decline rate plot showing hyperbolic decline. |
Figure 8.13: | Relative decline rate plot showing hyperbolic decline. |
Figure 8.14: | Projected production rate by a hyperbolic decline model. |
Figure 9.1: | A simple uniaxial test of a metal specimen. |
Figure 9.2: | Effect of tension stress on tangential stress. |
Figure 9.3: | Tubing–packer relation. |
Figure 9.4: | Ballooning and buckling effects. |
Figure 10.1: | A typical vertical separator. |
Figure 10.2: | A typical horizontal separator. |
Figure 10.3: | A typical horizontal double-tube separator. |
Figure 10.4: | A typical horizontal three-phase separator. |
Figure 10.5: | A typical spherical low-pressure separator. |
Figure 10.6: | Water content of natural gases. |
Figure 10.7: | Flow diagram of a typical solid desiccant dehydration plant. |
Figure 10.8: | Flow diagram of a typical glycol dehydrator. |
Figure 10.9: | Gas capacity of vertical inlet scrubbers based on 0.7-specific gravity at 100 °F. |
Figure 10.10: | Gas capacity for trayed glycol contactors based on 0.7-specific gravity at 100 °F. |
Figure 10.11: | Gas capacity for packed glycol contactors based on 0.7-specific gravity... |
Erscheint lt. Verlag | 1.4.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Technik ► Bergbau | |
Technik ► Elektrotechnik / Energietechnik | |
Wirtschaft | |
ISBN-10 | 0-08-047995-2 / 0080479952 |
ISBN-13 | 978-0-08-047995-8 / 9780080479958 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 18,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich