Algebraic Theory of Locally Nilpotent Derivations (eBook)

eBook Download: PDF
2007 | 2006
XI, 261 Seiten
Springer Berlin (Verlag)
978-3-540-29523-5 (ISBN)

Lese- und Medienproben

Algebraic Theory of Locally Nilpotent Derivations - Gene Freudenburg
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores the theory and application of locally nilpotent derivations. It provides a unified treatment of the subject, beginning with sixteen First Principles on which the entire theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane, right up to the most recent results, such as Makar-Limanov's Theorem for locally nilpotent derivations of polynomial rings. The book also includes a wealth of pexamples and open problems.

Acknowledgments 6
Contents 7
Introduction 10
Historical Overview 12
1 First Principles 17
1.1 Basic Definitions for Derivations 17
1.2 Basic Facts about Derivations 23
1.3 Group Actions 27
1.4 First Principles for Locally Nilpotent Derivations 30
1.5 Ga-Actions 39
2 Further Properties of Locally Nilpotent Derivations 42
2.1 Irreducible Derivations 42
2.2 Minimal Local Slices 44
2.3 Three Lemmas about UFDs 46
2.4 The Defect of a Derivation 47
2.5 Exponential Automorphisms 51
2.6 Wronskians and Kernel Elements 52
2.7 The Star Operator 54
3 Polynomial Rings 55
3.1 Variables, Automorphisms, and Gradings 55
3.2 Derivations of Polynomial Rings 56
3.3 Group Actions on 67
3.4 Locally Nilpotent Derivations of Polynomial Rings 69
3.5 Slices in Polynomial Rings 72
3.6 Triangular Derivations and Automoprhisms 72
3.7 Homogeneous Locally Nilpotent Derivations 76
3.8 Symmetric Locally Nilpotent Derivations 77
3.9 Some Important Early Examples 78
3.10 The Homogeneous Dependence Problem 82
4 Dimension Two 89
4.1 The Polynomial Ring in Two Variables over a Field 92
4.2 Locally Nilpotent R-Derivations of R[ x, y] 97
4.3 Rank-Two Derivations of Polynomial Rings 103
4.4 Automorphisms Preserving Lattice Points 106
4.5 Newton Polygons 107
4.6 Appendix: Newton Polytopes 109
5 Dimension Three 113
5.1 Miyanishi’s Theorem 114
5.2 Other Fundamental Theorems in Dimension Three 121
5.3 Questions of Triangularizability and Tameness 125
5.4 The Homogeneous (2, 5) Derivation 127
5.5 Local Slice Constructions 128
5.6 The Homogeneous Case 133
5.7 Graph of Kernels and Generalized Local Slice Constructions 137
5.8 G2a-Actions 139
5.9 Appendix: An Intersection Condition 140
6 Linear Actions of Unipotent Groups 143
6.1 The Finiteness Theorem 144
6.2 Linear 145
Actions 145
6.3 Linear Counterexamples to the Fourteenth Problem 152
6.4 Linear G2a-Actions 157
6.5 Appendix: Finite Group Actions 161
7 Non-Finitely Generated Kernels 163
7.1 Roberts’ Examples 163
7.2 Counterexample in Dimension Five 166
7.3 Proof for A’Campo-Neuen’s Example 175
7.4 Quotient of a Ga-Module 176
7.5 Proof for the Linear Example in Dimension Eleven 179
7.6 Kuroda’s Examples in Dimensions Three and Four 180
7.7 Locally Trivial Examples 181
7.8 Some Positive Results 182
7.9 Winkelmann’s Theorem 183
7.10 Appendix: Van den Essen’s Proof 184
8 Algorithms 187
8.1 Van den Essen’s Algorithm 189
8.2 Image Membership Algorithm 191
8.3 Criteria for a Derivation to be Locally Nilpotent 192
8.4 Maubach’s Algorithm 194
8.5 Extendibility Algorithm 196
8.6 Examples 196
8.7 Remarks 199
9 The Makar-Limanov and Derksen Invariants 201
9.1 Danielewski Surfaces 203
9.2 A Preliminary Result 205
9.3 The Threefold x + x2y + z2 + t3 = 0 207
9.4 Characterizing k[ x, y] by LNDs 210
9.5 Characterizing Danielewski Surfaces by LNDs 213
9.6 LNDs of Special Danielewski Surfaces 215
9.7 Further Properties of the ML Invariant 218
9.8 Further Results in the Classification of Surfaces 221
10 Slices, Embeddings and Cancellation 224
10.1 Some Positive Results 225
10.2 Torus Action Formula 228
10.3 Asanuma’s Torus Actions 230
10.4 V ´ en ´ ereau Polynomials 235
10.5 Open Questions 238
11 Epilogue 240
11.1 Rigidity of Kernels for Polynomial Rings 240
11.2 The Extension Property 241
11.3 Nilpotency Criterion 241
11.4 Calculating the Makar-Limanov Invariant 241
11.5 Relative Invariants 242
11.6 Structure of LND(B) 242
11.7 Maximal Subalgebras 243
11.8 Invariants of a Sum 243
11.9 Finiteness Problem for Extensions 244
11.10 Geometric Viewpoint 244
11.11 Paragonic Varieties 245
11.12 Stably Triangular Ga-Action 246
11.13 Extending Ga-Actions to Larger Group Actions 246
11.14 Variable Criterion 246
11.15 Bass’s Question on Rational Triangularization 247
11.16 Popov’s Questions 247
11.17 Miyanishi’s Question 247
References 248
Index 262

Erscheint lt. Verlag 18.7.2007
Reihe/Serie Encyclopaedia of Mathematical Sciences
Encyclopaedia of Mathematical Sciences
Zusatzinfo XI, 261 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Technik
Schlagworte additive group action on affine varieties • Algebra • Algebraic Geometry • Commutative algebra • Dimension • Invariant theory • locally nilpotent derivation
ISBN-10 3-540-29523-2 / 3540295232
ISBN-13 978-3-540-29523-5 / 9783540295235
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Grundlagen - Methoden - Anwendungen

von André Krischke; Helge Röpcke

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

eBook Download (2024)
De Gruyter (Verlag)
74,95