Geometry and Spectra of Compact Riemann Surfaces (eBook)
XIV, 456 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-4992-0 (ISBN)
This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature -1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.
This book deals with two subjects. The first subject is the geometric theory of compact Riemann surfaces of genus greater than one, the second subject is the Laplace operator and its relationship with the geometry of compact Riemann surfaces. The book grew out of the idea, a long time ago, to publish a Habili- tionsschrift, a thesis, in which I studied Bers' pants decomposition theorem and its applications to the spectrum of a compact Riemann surface. A basic tool in the thesis was cutting and pasting in connection with the trigono- metry of hyperbolic geodesic polygons. As this approach to the geometry of a compact Riemann surface did not exist in book form, I took this book as an occasion to carry out the geometry in detail, and so it grew by several chapters. Also, while I was writing things up there was much progress in the field, and some of the new results were too challenging to be left out of the book. For instance, Sunada's construction of isospectral manifolds was fascinating, and I got hooked on constructing examples for quite a while. So time went on and the book kept growing. Fortunately, the interest in exis- tence proofs also kept growing. The editor, for instance, was interested, and so was my family. And so the book finally assumed its present form. Many of the proofs given here are new, and there are also results which appear for the first time in print.
Preface 10
Contents 14
Chapter 1 18
Hyperbolic Structures 18
1.1 The Hyperbolic Plane 18
1.2 Hyperbolic Structures 22
1.3 Pasting 25
1.4 The Universal Covering 32
1.5 Perpendiculars 34
1.6 Closed Geodesies 38
1.7 The Fenchel-Nielsen Parameters 44
Chapter 2 48
Trigonometry 48
2.1 The Hyperboloid Model 48
2.2 Triangles 50
2.3 Trirectangles and Pentagons 54
2.4 Hexagons 57
2.5 Variable Curvature 60
2.6 Appendix: The Hyperboloid Model Revisited 66
The Quaternion Model 66
A Trace Relation 72
The General Sine and Cosine Formula 74
Chapter 3 80
Y-Pieces and Twist Parameters 80
3.1 Y-Pieces 80
3.2 Marked Y-Pieces 84
3.3 Twist Parameters 86
3.4 Signature (1,1) 93
3.5 Cubic Graphs 95
3.6 The Compact Riemann Surfaces 98
3.7 Appendix: The Length Spectrum Is of Unbounded Multiplicity 101
Geometric Approach 102
Algebraic Approach 106
Chapter 4 111
The Collar Theorem 111
4.1 Collars 111
4.2 Non-Simple Closed Geodesies 115
4.3 Variable Curvature 121
4.4 Cusps 125
4.5 Triangulations of Controlled Size 133
Chapter 5 139
Bers' Constant and the Hairy Torus 139
5.1 Bers' Theorem 140
5.2 Partitions 141
5.3 The Hairy Torus 147
5.4 Bers' Constant Without Curvature Bounds 150
Chapter 6 155
The Teichmuller Space 155
6.1 Marked Riemann Surfaces 155
6.2 Models of Teichmiiller Space 159
6.3 The Real Analytic Structure of tg 164
6.4 Distances in tr 169
6.5 The Teichmuller Modular Group 171
6.6 A Rough Fundamental Domain 177
6.7 The Coordinates of Zieschang-Vogt-Coldewey 181
6.8 Fuchsian Groups and Bers' Coordinates 187
Chapter 7 199
The Spectrum of the Laplacian 199
7.1 Introduction 199
7.2 The Spectrum and the Heat Equation 201
7.3 The Abel Transform 211
7.4 The Heat Kernel of the Hyperbolic Plane 214
7.5 The Heat Kernel of G/H 222
Chapter 8 227
Small Eigenvalues 227
8.1 The Interval [0, ¼] 227
8.2 The Minimax Principles 230
8.3 Cheeger's Inequality 232
8.4 Eigenvalue Estimates 235
Chapter 9 241
Closed Geodesies and Huber's Theorem 241
9.1 The Origin of the Length Spectrum 242
9.2 Summation over the Lengths 244
9.3 Summation over the Eigenvalues 252
9.4 The Prime Number Theorem 258
9.5 Selberg's Trace Formula 269
9.6 The Prime Number Theorem with Error Terms 273
9.7. Lattice Points 278
Chapter 10 285
Wolpert's Theorem 285
10.1 Introduction 285
10.2 Curve Systems 287
10.3 Finitely Many Lengths Determine the Length Spectrum 290
10.4 Generic Surfaces Are Determined by Their Spectrum 292
10.5 Decoding the Moduli 295
Chapter 11 300
Sunada's Theorem 300
11.1 Some History 300
11.2 Examples of Almost Conjugate Groups 302
11.3 Proof of Sunada's Theorem 308
11.4 Cayley Graphs 313
11.5 Transplantation of Eigenfunctions 321
11.6 Transplantation of Closed Geodesies 324
Chapter 12 328
Examples of Isospectral Riemann Surfaces 328
12.1 Cayley Graphs and Hyperbolic Polygons 328
12.2 Smoothness 330
12.3 Examples over Z*gx Zg 335
12.4 Examples over SL(3,2) 338
12.5 Genus 6 342
12.6 Large Families 349
12.7 Criteria For Non-isometry 350
Chapter 13 357
The Size of Isospectral Families 357
13.1 Finiteness 357
13.2 Parameter Geodesies of Length > exp(-4g)
13.3 Measuring the Twist Parameters 364
13.4 Parameter Geodesies of Length < exp(-4g)
Chapter 14 379
Perturbations of the Laplacian in Teichmuller Space 379
14.1 The Hilbert Spaces H0 and H1 379
14.2 The Friedrichs Extension of the Laplacian 383
14.3 A Representation Theorem 387
14.4 Resolvents and Projectors 390
14.5 Holomorphic Families 397
14.6 A Model of Teichmuller Space 399
14.7 Reduction to Finite Dimension 405
14.8 Holomorphic Families of Laplacians 414
14.9 Analytic Properties of the Eigenvalues 416
14.10 Finite Parts of the Spectrum 423
Appendix 426
Curves and Isotopies 426
The Theorems of Baer-Epstein-Zieschang 426
An Application to the 3-Holed Sphere 441
Length-Decreasing Homotopies 445
Bibliography 450
Index 465
Formula Glossary 471
Erscheint lt. Verlag | 29.10.2010 |
---|---|
Reihe/Serie | Modern Birkhäuser Classics | Modern Birkhäuser Classics |
Zusatzinfo | XIV, 456 p. 145 illus. |
Verlagsort | Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | complex Riemann surface theory • Differential Geometry • Equation • Geometry • Laplace Operator • Proof • Riemann Surfaces • Sunada’s construction • Theorem • Wolpert’s theorem |
ISBN-10 | 0-8176-4992-1 / 0817649921 |
ISBN-13 | 978-0-8176-4992-0 / 9780817649920 |
Haben Sie eine Frage zum Produkt? |
Größe: 58,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich