Static and Dynamic Coupled Fields in Bodies with Piezoeffects or Polarization Gradient (eBook)
IX, 209 Seiten
Springer Berlin (Verlag)
978-3-540-31670-1 (ISBN)
This book is devoted to the theory of coupled electro-magneto-thermo-elastic fields excited in different bodies by various sources, both static and dynamic. It presents the classical piezoelectric and piezomagnetic effects, the Mindlin's electroelastic coupling due to a polarization gradient, and different combinations of these effects with thermoelasticity.
Table of Contents
7
Introduction 10
Part I Two Types of Electro-Elastic Coupling and Their Role in Properties of Line Defects in Unbounded Anisotropic Media
16
1 Piezoelectricity and Piezomagnetism: Basic Concepts and Equations
17
1.1 Thermodynamic potentials
17
1.2 Linear piezoelectricity 20
1.3 Piezomagnetic effects of linear and linearized origins 28
2 Mindlin's Electro-Elastic Coupling due to Polarization Gradient
31
2.1 Toupin's alternative formulation of the theory of piezoelectricity
31
2.2 Mindlin's extension of the classical theory of piezoelectricity
34
2.3 Mindlin's equations for centrosymmetric and isotropic media
40
2.4 Thermoelasticity of dielectrics with polarization gradient
45
3 General Electro-Elastic Line Defec tin Unbounded Piezoelectric Body
51
3.1 Dislocation and its electrostatic analog as a combined line defect
51
3.2 Fundamental properties of 4D dislocations of arbitrary shape
56
3.3 Electro-elastic fields of straight 4D dislocations 64
4 Thermo-Electro-Elastic Fields Accompanying Plastic Deformation
76
4.1 Thermodynamics of plastic deformation in thermoelastic piezoelectrics
76
4.2 Coupled fields produced by a moving straight dislocation
80
4.3 The temperature distribution around a moving edge dislocation
84
5 Some Extensions for Dislocation in Materials with Polarization Gradient
93
5.1 Linear and surface definitions of a dislocation 93
5.2 The field of a straight dislocation 98
Part II 1D and 2D Electro-Elastic Coupled Fields in Media with Surfaces and Interfaces
105
6 Coupled Fields of Thermal Inclusion in Media with Polarization Gradient
106
6.1 Plain thermal inclusion in unbounded dielectric medium
106
6.2 Thermal inclusion at the surface of a half-infinite dielectric
112
6.3 Plain thermal inclusion in the middle of a dielectric plate
115
6.4 Plain thermal inclusion at the surface of a dielectric plate
120
6.5 Cylindrical thermal inclusion in an infinite dielectric medium
125
6.6 Conclusions
127
7 Green's Functions for Piezoelectric Strip with a General Line Source
129
7.1 Statement of the problem and basic equations 129
7.2 Boundary conditions and their block representations 134
7.3 Green's function for the plate with free surfaces 137
7.4 Green's functions for plates with other boundary conditions
143
7.5 Conclusions 145
8 Green's Functions for Piezoelectric Strip with Line Surface Sources
146
8.1 Basic equations and boundary conditions 146
8.2 Strips with prescribed loads at both surfaces 150
8.3 Strips with prescribed displacements at both surfaces 158
8.4 Strips with prescribed displacements at one surface and loads at another
163
8.5 Conclusions 169
9 2D Electro-Elastic Fields in a Piezoelectric Layer-Substrate Structure
170
9.1 Basic equations 170
9.2 Boundary conditions at the surface and at the interface
173
9.3 General and partial solutions for n(k,y) and n(x,y)
175
9.4 Electro-elastic fields excited by the line source in the interior of the structure
178
9.5 Electro-elastic fields excited at the surface of the structure
184
9.6 Conclusions
187
10 Acoustic Waves in Piezomagnetic and Piezoelectric Structures
189
10.1 Bluestien-Gulyaev type surface waves in piezomagnetics
189
10.2 Magnetoelastic SH waves in a bicrystalline gap structure
192
10.3 Resonance excitation of Bluestein-Gulyaev waves
196
10.4 Waveguide Sh acoustic modes in a piezoelictric plate
200
References 205
"7 GREENS FUNCTIONS FOR PIEZOELECTRIC STRIP WITH A GENERAL LINE SOURCE (p. 125-126)
In this chapter we are going to derive the static Green function describing the 2D coupled fields in arbitrary piezoelectric strip excited by a general line defect parallel to the surfaces and consisting of the four line sources introduced in Sec. 3.3 (c): the line of forces f, the line of charge q, the straight dislocation with the Burgers vector b, and its electrostatic analog of the strength A(p. As we have seen in Ch. 3, the latter line defect is completely determined by the discontinuity Aip in the electrical potential across the arbitrary plane cut ending on the line, which in our case determines the coinciding positions of all the mentioned sources.
The first studies in this field were accomplished for a particular case of straight dislocations in isotropic elastic plates [55-59]. These results were later extended for anisotropic [53] and possibly inhomogeneous [54] purely elastic (nonpiezoelectric) infinite strips. The further extension of the theory for the case of arbitrary piezoelectric strips has been developed in our paper [28]. The content of Chapter 7 is based on this paper.
7.1 Statement of the problem and basic equations
(a) Some preliminary remarks
The aim of this chapter is a derivation of the electro-elastic fields excited in a piezoelectric plate by the general line defect defined above. Of course, such an object, as the general line defect first introduced by Lothe & Barnett [63], is only conventionally a "defect", because among its four constituent line sources there is only one lattice defect - the dislocation. So, perhaps, it would be more correct to talk about the general line source rather than about a defect.
Anyway, independently of the terminology introduced and accepted before us, below we are going to find the physical fields excited by such a combined source. In our analysis it will be convenient to follow the method developed in [54] for purely elastic anisotropic continuously layered media, specifying the problem to a homogeneous medium and simultaneously extending it for a piezoelectric case. Such an extension turns out to be not quite straightforward because of the electrical boundary conditions, which are determined by a continuity of the normal component of electric displacement on the interfaces between the strip and the adjoined isotropic dielectric media. Our consideration will be based on the Stroh-like approach presented in details in Chapter 3 (Sec. 3.3 (c)) where the problem was already formulated for the same general line defect in unbounded medium."
Erscheint lt. Verlag | 12.4.2010 |
---|---|
Reihe/Serie | Lecture Notes in Applied and Computational Mechanics | Lecture Notes in Applied and Computational Mechanics |
Zusatzinfo | IX, 209 p. 24 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | Coupled Fields • electricity • Geometry • Piezoeffects • Piezoelectric Effect • Piezomagnetic Effect • Polarization Gradient • Static Fields • Thermoelasticity |
ISBN-10 | 3-540-31670-1 / 3540316701 |
ISBN-13 | 978-3-540-31670-1 / 9783540316701 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich