Deformation Spaces (eBook)

Perspectives on algebro-geometric moduli
eBook Download: PDF
2010 | 2010
VII, 173 Seiten
Vieweg & Teubner (Verlag)
978-3-8348-9680-3 (ISBN)

Lese- und Medienproben

Deformation Spaces - Hossein Abbaspour, Matilde Marcolli, Thomas Tradler
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The first instances of deformation theory were given by Kodaira and Spencer for complex structures and by Gerstenhaber for associative algebras. Since then, deformation theory has been applied as a useful tool in the study of many other mathematical structures, and even today it plays an important role in many developments of modern mathematics.
This volume collects a few self-contained and peer-reviewed papers by experts which present up-to-date research topics in algebraic and motivic topology, quantum field theory, algebraic geometry, noncommutative geometry and the deformation theory of Poisson algebras. They originate from activities at the Max-Planck-Institute for Mathematics and the Hausdorff Center for Mathematics in Bonn.


Dr. Hossein Abbaspour, Department of Mathematics, Université de Nantes, France.
Prof. Dr. Matilde Marcolli, Department of Mathematics, California Institute of Technology, Pasadena, California, USA.
Dr. Thomas Tradler, Department of Mathematics, New York City College of Technology (CUNY), New York, USA.

Dr. Hossein Abbaspour, Department of Mathematics, Université de Nantes, France. Prof. Dr. Matilde Marcolli, Department of Mathematics, California Institute of Technology, Pasadena, California, USA. Dr. Thomas Tradler, Department of Mathematics, New York City College of Technology (CUNY), New York, USA.

Preface 5
Contents 6
On the Hochschild and Harrison (co)homology of C8-algebras and applications to string topology 7
1. Hochschild (co)homology of an A8-algebra with values in a bimodule 10
2. C8-algebras, C8-bimodules, Harrison (co)homology 16
3. .-operations and Hodge decomposition 23
4. An exact sequence `a laJacobi-Zariski 37
5. Applications to string topology 47
6. Concluding remarks 55
References 55
What is the Jacobian of a Riemann Surface with Boundary? 58
1. Introduction 58
2. Open abelian varieties 61
3. Gluing and SPCMC structure 66
4. The Jacobian of a worldsheet with boundary 71
5. The lattice conformal .eld theory on the SPCMC of open abelian varieties 76
References 78
Pure weight perfect Modules on divisorial schemes 80
1. Introduction 80
2. Preliminary 81
3. Weight on pseudo-coherent Modules 87
4. Proof of the main theorem 88
5. Applications 92
References 93
Higher localized analytic indices and strict deformation quantization 95
1. Introduction 95
2. Index theory for Lie groupoids 98
3. Index theory and strict deformation quantization 104
4. Higher localized indices 109
References 114
An algebraic proof of Bogomolov-Tian-Todorov theorem 116
Introduction 116
1. Review of DGLAs and L8-algebras 118
2. The Thom-Whitney complex 121
3. Semicosimplicial differential graded Lie algebras and mapping cones 124
4. Semicosimplicial Cartan homotopies 127
5. Semicosimplicial Lie algebras and deformations of smooth varieties 129
6. Proof of the main theorem 131
References 134
Quantizing deformation theory 137
1. Introduction 137
2. Linear algebra 139
References 143
L8-interpretation of a classication of deformations of Poisson structures in dimension three 144
1. Introduction 144
2. Preliminaries: L8-algebras and Poisson algebras 148
3. Choice in a transfer of L8-algebra structure 154
4. Deformations of Poisson structures via L8-algebras 164
References 173

What is the Jacobian of a Riemann Surface with Boundary? (S. 52-53)

Thomas M. Fiore and Igor Kriz Abstract.

We de?ne the Jacobian of a Riemann surface with analytically parametrized boundary components. These Jacobians belong to a moduli space of “open abelian varieties” which satis?es gluing axioms similar to those of Riemann surfaces, and therefore allows a notion of “conformal ?eld theory” to be de?ned on this space. We further prove that chiral conformal ?eld theories corresponding to even lattices factor through this moduli space of open abelian varieties.

1. Introduction

The main purpose of the present note is to generalize the notion of the Jacobian of a Riemann surface to Riemann surfaces with real-analytically parametrized boundary (or, in other words, conformal ?eld theory worldsheets). The Jacobian of a closed surface is an abelian variety. What structure of “open abelian variety” captures the relevant data in the “Jacobian” of a CFT worldsheet? If we considered Riemann surfaces with punctures instead of parametrized boundary components, the right answer could be easily phrased in terms of mixed Hodge structures.

But in worldsheets, we see more structure, and some of it is in?nite-dimensional. For example, even to a disk with analytically parametrized boundary, one naturally assigns an in?nite-dimensional symplectic form and a restricted maximal isotropic space (cf. [7]). Any structure we propose should certainly include such data. Additionally, in worldsheets, boundary components can have inbound or outbound orientation, and an inbound and outbound boundary component can be glued to produce another worldsheet. So another test of having the right notion of “open abelian variety” is that it should enjoy a similar gluing structure.

We should point out that it is actually a remarkably strong requirement that a structure such as a (closed) abelian variety could somehow be “glued together” from “genus 0” data similar to the situation we described above for a disk. One quickly convinces oneself that naive approaches based on modelling somehow the 1-forms on a Riemann surface, together with mixed Hodge-type integral structure data, fail to produce the required gluing. In fact, in some sense, the desired structure must be “pure” rather than “mixed”.

Note that there is no way of “gluing” a pure Hodge structure out of a mixed Hodge structure which does not already contain it: in the case of a closed Riemann surface with punctures, the mixed Hodge structure on its ?rst cohomogy contains the pure Hodge structure of the original closed surface, so no gluing is involved. Clearly, the situation is di?erent when we are gluing a non-zero genus surface from a genus 0 surface with parametrized boundary.

There is, however, a yet stronger test. When L is an even lattice (together with a Z/2-valued bilinear form b satisfying a suitable condition), one has a notion of conformal ?eld theory associated with L ([9, 4]). It could be argued that the de?nition only uses additive data, so the lattice conformal theories should “factor through open abelian varieties”. In some sense, if one considers the conjectured space of open abelian varieties to be the “Jacobian” of the moduli space of worldsheets (with all its structure), then one could interpret this as a sort of “Abelian Langlands correspondence” for that space.

Erscheint lt. Verlag 21.4.2010
Reihe/Serie Aspects of Mathematics
Aspects of Mathematics
Zusatzinfo VII, 173 p.
Verlagsort Wiesbaden
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Algebraic Geometry • algebraic topology • deformation theory • Hochschild Cohomology • Mathematical Physics • Noncommutative Geometry • quantum field theory
ISBN-10 3-8348-9680-2 / 3834896802
ISBN-13 978-3-8348-9680-3 / 9783834896803
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich