Hilbert Space Operators in Quantum Physics (eBook)

eBook Download: PDF
2008 | 2nd ed. 2008
XVII, 664 Seiten
Springer Netherland (Verlag)
978-1-4020-8870-4 (ISBN)

Lese- und Medienproben

Hilbert Space Operators in Quantum Physics - Jirí Blank, Pavel Exner, Miloslav Havlícek
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The new edition of this book detailing the theory of linear-Hilbert space operators and their use in quantum physics contains two new chapters devoted to properties of quantum waveguides and quantum graphs. The bibliography contains 130 new items.



Jirí Blank graduated in 1961 from Czech Technical University and got his PhD from Charles University. Until his premature death in 1990 he was active in mathematical-physics research and teaching. He educated many excellent students.

Pavel Exner graduated in 1969 from Charles University. From 1978 to 1990 he worked in Joint Institute for Nuclear Research, Dubna, where he got his PhD and DSc degrees. After the return to Prague he headed a mathematical-physics group in the Nuclear Physics Institute of Academy of Sciences and became a professor of theoretical physics at Charles University. He authored over 150research papers to which more than thousand citations can be found. At present he is a vice president of European Mathematical Society and secretary of IUPAP commission for mathematical physics.

Miloslav Havlícek graduated in 1961 from Czech Technical University; he got his PhD from Charles University and DSc at Joint Institute for Nuclear Research, Dubna. He wrote numerous papers on algebraic methods in quantum physics. From 1990 he served repeatedly as dean of the Faculty of Nuclear Sciences and Physical Engineering and head of the Department of Mathematics.

Jirí Blank graduated in 1961 from Czech Technical University and got his PhD from Charles University. Until his premature death in 1990 he was active in mathematical-physics research and teaching. He educated many excellent students.Pavel Exner graduated in 1969 from Charles University. From 1978 to 1990 he worked in Joint Institute for Nuclear Research, Dubna, where he got his PhD and DSc degrees. After the return to Prague he headed a mathematical-physics group in the Nuclear Physics Institute of Academy of Sciences and became a professor of theoretical physics at Charles University. He authored over 150research papers to which more than thousand citations can be found. At present he is a vice president of European Mathematical Society and secretary of IUPAP commission for mathematical physics.Miloslav Havlícek graduated in 1961 from Czech Technical University; he got his PhD from Charles University and DSc at Joint Institute for Nuclear Research, Dubna. He wrote numerous papers on algebraic methods in quantum physics. From 1990 he served repeatedly as dean of the Faculty of Nuclear Sciences and Physical Engineering and head of the Department of Mathematics.

Preface to the second edition, Preface,.
1.Some notions from functional analysis,Vector and normed spaces,1.2 Metric and topological spaces,1.3 Compactness, 1.4 Topological vector spaces, 1.5 Banach spaces and operators on them, 1.6 The principle of uniform boundedness, 1.7 Spectra of closed linear operators, Notes to Chapter 1, Problems
2. Hilbert spaces, 2.1 The geometry of Hilbert spaces, 2.2 Examples, 2.3 Direct sums of Hilbert spaces, 2.4 Tensor products, 2.4 Notes to Chapter 2, Problems
3. Bounded operators, 3.1 Basic notions, 3.2 Hermitean operators, 3.3 Unitary and isometric operators, 3.4 Spectra of bounded normal operators, 3.5 Compact operators, 3.6 Hilbert-Schmidt and trace-class operators, Notes to Chapter 3, Problems
4. Unbounded operators, 4.1 The adjoint, 4.2 Closed operators, 4.3 Normal operators. Self-adjointness, 4.4 Reducibility. Unitary equivalence, 4.5 Tensor products, 4.6 Quadratic forms, 4.7 Self-adjoint extensions, 4.8 Ordinary differential operators, 4.9 Self-adjoint extensions of differential operators, Notes to Chapter 4, Problems
5. Spectral Theory , 5.1 Projection-valued measures, 5.2 Functional calculus, 5.3 The spectral Tudorem, 5.4 Spectra of self-adjoint operators, 5.5 Functions of self-adjoint operators, 5.6 Analytic vectors, 5.7 Tensor products, 5.8 Spectral representation, 5.9 Groups of unitary operators, Notes to Chapter 5, Problems
6. Operator sets and algebra, 6.1 C^*-algebras, 6.2 GNS construction, 6.3 W^*-algebras, 6.4 Normal states on W^*-algebras, 6.5 Commutative symmetric operator sets, 6.6 Complete sets of commuting operators, 6.7 Irreducibility. Functions of non-commuting operators, 6.8 Algebras of unbounded operators, Notes to Chapter 6, Problems
7. States and observables, 7.1 Basic postulates, 7.2 Simple examples, 7.3 Mixed states, 7.4 Superselection rules, 7.5 Compatibility, 7.6 The algebraic approach, Notes to Chapter 7, Problems
8. Position and momentum, 8.1 Uncertainty relations, 8.2 The canonical commutation relations, 8.3 The classical limit and quantization, Notes to Chapter 8, Problems
9. Time evolution, 9.1 The fundamental postulate, 9.2 Pictures of motion, 9.3 Two examples, 9.4 The Feynman integral, 9.5 Nonconservative systems, 9.6 Unstable systéme, Notes to Chapter 9, Problems
10. Symmetries of quantum systéme, 10.1 Basic notions, 10.2 Some examples, 10.3 General space-time transformations, Notes to Chapter 10, Problems
11. Composite systems, 11.1 States and observables, 11.2 Reduced states, 11.3 Time evolution, 11.4 Identical particles, 11.5 Separation of variables. Symmetries, Notes to Chapter 11, Problems
12. The second quantization, 12.1 Fock spaces, 12.2 Creation and annihilation operators, 12.3 Systems of noninteracting particles, Notes to Chapter 12, Problems
13. Axiomatization of quantum theory, 13.1 Lattices of propositions, 13.2 States on proposition systems, 13.3 Axioms for quantum field theory, Notes to Chapter 13, Problems
14. Schrödinger operators, 14.1 Self-adjointness, 14.2 The minimax principle. Analytic perturbations, 14.3 The discrete spectrum, 14.4 The essential spectrum, 14.5 Constrained motion, 14.6 Point and contact interactions, Notes to Chapter 14, Problem
15. Scattering theory, 15.1 Basic notions ,15.2 Existence of wave operators, 15.3 Potential scattering, 15.4 A model of two-channel scattering, Notes to Chapter 15, Problems
16. Quantum waveguides, 16.1 Geometric effects in Dirichlet stripes, 16.2 Point

Erscheint lt. Verlag 24.9.2008
Reihe/Serie Theoretical and Mathematical Physics
Theoretical and Mathematical Physics
Zusatzinfo XVII, 664 p.
Verlagsort Dordrecht
Sprache englisch
Original-Titel Hilbert Space Operators in Quantum Physics
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik
Schlagworte Functional Analysis • hilbert space • Hilbert-space operators • Quantum graphs • Quantum Physics • Quantum Waveguides • Second Quantization • self-adjoint operators • spectral theory
ISBN-10 1-4020-8870-1 / 1402088701
ISBN-13 978-1-4020-8870-4 / 9781402088704
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich