Metric Structures for Riemannian and Non-Riemannian Spaces (eBook)

eBook Download: PDF
2007 | 1st ed. 1999. Corr. 2nd printing 2001. 4th printing 2007
XX, 586 Seiten
Birkhauser Boston (Verlag)
978-0-8176-4583-0 (ISBN)

Lese- und Medienproben

Metric Structures for Riemannian and Non-Riemannian Spaces -  Mikhail Gromov
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is an English translation of the famous 'Green Book' by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices, by Gromov on Levy's inequality, by Pansu on 'quasiconvex' domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures, as well as an extensive bibliography and index round out this unique and beautiful book.


Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory.The new wave began with seminal papers by Svarc and Milnor on the growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This progress was followed by the creation of the asymptotic metric theory of infinite groups by Gromov.The structural metric approach to the Riemannian category, tracing back to Cheeger's thesis, pivots around the notion of the Gromov Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity.The first stages of the new developments were presented in Gromov's course in Paris, which turned into the famous "e;Green Book"e; by Lafontaine and Pansu (1979). The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices by Gromov on Levy's inequality, by Pansu on "e;quasiconvex"e; domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures as well as an extensive bibliographyand index round out this unique and beautiful book.

Contents 8
Preface to the French Edition 13
Preface to the English Edition 14
Introduction: Metrics Everywhere 16
1 Length Structures: Path Metric Spaces 21
A. Length structures 21
B. Path metric spaces 26
C Examples of path metric spaces 30
D. Arc- wise isometries 42
2 Degree and Dilatation 47
A. Topological review 47
B. Elementary properties of dilatations for spheres 50
C. Homotopy counting Lipschitz maps 55
D. Dilatation of sphere- valued mappings 61
E+ Degrees of short maps between compact and noncompact manifolds 75
3 Metric Structures on Families of Metric Spaces 91
A. Lipschitz and Hausdorff distance 91
B. The noncompact case 105
C. The Hausdorff- Lipschitz metric, quasi- isometries, and word metrics 109
D. First- order metric invariants quasi- isometries, and word metrics 114
E. Convergence with control 118
3 1/2 Convergence and Concentration of Metrics and Measures 133
A. A review of measures and mm spaces 133
B. D^^-convergence of mni- spaces 136
C. Geometry of measures in metric spaces 144
D. Basic geometry of the space 149
E. Concentration phenomenon 160
F. Geometric invariants of measures related to concentration 201
G. Concentration, spectrum, and the spectral diameter 210
H. Observable distance on the space and concentration 220
I. The Lipschitz order on A', pyramids, and asymptotic concentration 232
J. Concentration versus dissipation 241
4 Loewner Rediscovered 259
A. First, some history ( in dimension 2) 259
B. Next, some questions in dimensions > 3
C- Norms on homology and Jacobi varieties 265
D. An application of geometric integration theory 281
E+ Unstable systolic inequalities and filling 284
F+ Finer inequalities and systoles of universal spaces 289
5 Manifolds with Bounded Ricci Curvature 293
A. Precompactness 293
B. Growth of fundamental groups 299
C. The first Betti number 304
D. Small loops 308
E. Applications of the packing inequalities 314
G. Simplicial volume and entropy 322
H. Generalized simplicial norms and the metrization of homotopy theory 327
I. Ricci curvature beyond coverings 336
6 Isoperimetric Inequalities and Amenability 341
A. Quasiregular mappings 341
B. Isoperimetric dimension of a manifold 342
C. Computations of isoperimetric dimension 347
D. Generalized quasiconformality 356
E+ The Varopoulos isoperimetric inequality 366
7 Morse Theory and Minimal Models 371
A. Application of Morse theory to loop spaces 371
B. Dilatation of mappings between simply connected manifolds 377
8 Pinching and Collapse 385
A. Invariant classes of metrics and the stability problem 385
B. Sign and the meaning of curvature 389
C. Elementary geometry of collapse 395
D. Convergence without collapse 404
E. Basic features of collapse 410
Appendix A 413
Appendix B 421
I. Basic concepts and examples 422
II. Analysis on general spaces 443
III. Rigidity and structure 465
IV. An introduction to real-variable methods 511
Appendix C 539
Appendix D 551
Bibliography 565
Glossary of Notation 595
Index 597

Erscheint lt. Verlag 25.6.2007
Reihe/Serie Modern Birkhäuser Classics
Modern Birkhäuser Classics
Mitarbeit Anhang von: M. Katz, P. Pansu, S. Semmes
Übersetzer S. M. Bates
Zusatzinfo XX, 586 p. 100 illus.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte algebraic topology • Curvature • differential equation • diff.geometry • diff.topology • Homotopy • homotopy theory • manifold • Manifolds • Mathematics • Minimum • Probability Theory • Riemannian Geometry • Structures • Systole • Volume
ISBN-10 0-8176-4583-7 / 0817645837
ISBN-13 978-0-8176-4583-0 / 9780817645830
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 27,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich