Combinatorial Set Theory
Springer London Ltd (Verlag)
978-1-4471-2172-5 (ISBN)
The Setting.- Overture: Ramsey's Theorem.- The Axioms of Zermelo-Fraenkel Set Theory.- Cardinal Relations in ZF only.- The Axiom of Choice.- How to Make Two Balls from One.- Models of Set Theory with Atoms.- Twelve Cardinals and their Relations.- The Shattering Number Revisited.- Happy Families and their Relatives.- Coda: A Dual Form of Ramsey's Theorem.- The Idea of Forcing.- Martin's Axiom.- The Notion of Forcing.- Models of Finite Fragments of Set Theory.- Proving Unprovability.- Models in which AC Fails.- Combining Forcing Notions.- Models in which p = c.- Properties of Forcing Extensions.- Cohen Forcing Revisited.- Silver-Like Forcing Notions.- Miller Forcing.- Mathias Forcing.- On the Existence of Ramsey Ultrafilters.- Combinatorial Properties of Sets of Partitions.- Suite.
Erscheint lt. Verlag | 9.12.2011 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics |
Zusatzinfo | XVI, 456 p. |
Verlagsort | England |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Schlagworte | Axiom of choice • Combinatorics of Forcing • Consistency and Independence Results • Infinite Combinatorics • Ramsey theory |
ISBN-10 | 1-4471-2172-4 / 1447121724 |
ISBN-13 | 978-1-4471-2172-5 / 9781447121725 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich