Neural Networks - Berndt Müller, Joachim Reinhardt, Michael T. Strickland

Neural Networks

An Introduction
Buch | Softcover
XV, 331 Seiten
1995 | 2nd updated and corr. ed.
Springer Berlin (Verlag)
978-3-540-60207-1 (ISBN)
53,49 inkl. MwSt
Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.

1. The Structure of the Central Nervous System.- 2. Neural Networks Introduced.- 3. Associative Memory.- 4. Stochastic Neurons.- 5. Cybernetic Networks.- 6. Multilayered Perceptrons.- 7. Applications.- 8. More Applications of Neural Networks.- 9. Network Architecture and Generalization.- 10. Associative Memory: Advanced Learning Strategies.- 11. Combinatorial Optimization.- 12. VLSI and Neural Networks.- 13. Symmetrical Networks with Hidden Neurons.- 14. Coupled Neural Networks.- 15. Unsupervised Learning.- 16. Evolutionary Algorithms for Learning.- 17. Statistical Physics and Spin Glasses.- 18. The Hopfield Network for p/N' 0.- 19. The Hopfield Network for Finite p/N.- 20. The Space of Interactions in Neural Networks.- 21. Numerical Demonstrations.- 22. ASSO: Associative Memory.- 23. ASSCOUNT: Associative Memory for Time Sequences.- 24. PERBOOL: Learning Boolean Functions with Back-Prop.- 25. PERFUNC: Learning Continuous Functions with Back-Prop.- 26. Solution of the Traveling-Salesman Problem.- 27. KOHOMAP: The Kohonen Self-organizing Map.- 28. btt: Back-Propagation Through Time.- 29. NEUROGEN: Using Genetic Algorithms to Train Networks.- References.

"I have enjoyed using the previous edition of this well-known book both as a personal text and as a class manual. Although it claims to be only an introduction, it contains a wealth of material and addresses real problems in physics." Computing Reviews

"I have enjoyed using the previous edition of this well-known book both as a personal text and as a class manual. Although it claims to be only an introduction, it contains a wealth of material and addresses real problems in physics." Computing Reviews

Erscheint lt. Verlag 2.10.1995
Reihe/Serie Physics of Neural Networks
Zusatzinfo XV, 331 p. With online files/update.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 564 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte algorithms • evolutionary algorithm • Genetic algorithms • learning • nervous system • Neuronale Netze • neurons • Optimization • Statistical Physics
ISBN-10 3-540-60207-0 / 3540602070
ISBN-13 978-3-540-60207-1 / 9783540602071
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00