Number Theoretic Methods in Cryptography - Igor Shparlinski

Number Theoretic Methods in Cryptography

Complexity lower bounds
Buch | Hardcover
IX, 182 Seiten
1999 | 1999
Springer Basel (Verlag)
978-3-7643-5888-4 (ISBN)
53,49 inkl. MwSt
The book introduces new techniques which imply rigorous lower bounds on the complexity of some number theoretic and cryptographic problems. These methods and techniques are based on bounds of character sums and numbers of solutions of some polynomial equations over finite fields and residue rings. It also contains a number of open problems and proposals for further research. We obtain several lower bounds, exponential in terms of logp, on the de grees and orders of - polynomials; - algebraic functions; - Boolean functions; - linear recurring sequences; coinciding with values of the discrete logarithm modulo a prime p at suf ficiently many points (the number of points can be as small as pI/He). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the right most bit of the discrete logarithm and defines whether the argument is a quadratic residue. We also obtain non-trivial upper bounds on the de gree, sensitivity and Fourier coefficients of Boolean functions on bits of x deciding whether x is a quadratic residue. These results are used to obtain lower bounds on the parallel arithmetic and Boolean complexity of computing the discrete logarithm. For example, we prove that any unbounded fan-in Boolean circuit. of sublogarithmic depth computing the discrete logarithm modulo p must be of superpolynomial size.

I Preliminaries.- 1 Introduction.- 2 Basic Notation and Definitions.- 3 Auxiliary Results.- II Approximation and Complexity of the Discrete Logarithm.- 4 Approximation of the Discrete Logarithm Modulo p.- 5 Approximation of the Discrete Logarithm Modulo p - 1.- 6 Approximation of the Discrete Logarithm by Boolean Functions.- 7 Approximation of the Discrete Logarithm by Real and Complex Polynomials.- III Complexity of Breaking the Diffie-Hellman Cryptosystem.- 8 Polynomial Approximation and Arithmetic Complexity of the Diffie-Hellman Key.- 9 Boolean Complexity of the Diffie-Hellman Key.- IV Other Applications.- 10 Trade-off between the Boolean and Arithmetic Depths of Modulo p Functions.- 11 Special Polynomials and Boolean Functions.- 12 RSA and Blum-Blum-Shub Generators of Pseudo-Random Numbers.- V Concluding Remarks.- 13 Generalizations and Open Questions.- 14 Further Directions.

"This volume gives a thorough treatment of the complexity of the discrete logarithm problem in a prime field, as well as related problems. The final chapter on further directions gives an interesting selection of problems."

--Zentralblatt Math

Erscheint lt. Verlag 15.2.1999
Reihe/Serie Progress in Computer Science and Applied Logic
Zusatzinfo IX, 182 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 454 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Complexity • Complexity theory • Computer Science • cryptography • finite field • Hardcover, Softcover / Mathematik/Allgemeines, Lexika • HC/Mathematik/Allgemeines, Lexika • Kryptologie • Number Theory
ISBN-10 3-7643-5888-2 / 3764358882
ISBN-13 978-3-7643-5888-4 / 9783764358884
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

Buch | Hardcover (2023)
Carl Hanser (Verlag)
16,99