Self-dual Partial Differential Systems and Their Variational Principles
Springer-Verlag New York Inc.
978-1-4419-2744-6 (ISBN)
How to solve partial differential systems by completing the square. This could well have been the title of this monograph as it grew into a project to develop a s- tematic approach for associating suitable nonnegative energy functionals to a large class of partial differential equations (PDEs) and evolutionary systems. The minima of these functionals are to be the solutions we seek, not because they are critical points (i. e. , from the corresponding Euler-Lagrange equations) but from also - ing zeros of these functionals. The approach can be traced back to Bogomolnyi's trick of "completing squares" in the basic equations of quantum eld theory (e. g. , Yang-Mills, Seiberg-Witten, Ginzburg-Landau, etc. ,), which allows for the deri- tion of the so-called self (or antiself) dual version of these equations. In reality, the "self-dual Lagrangians" we consider here were inspired by a variational - proach proposed - over 30 years ago - by Brezis ' and Ekeland for the heat equation and other gradient ows of convex energies. It is based on Fenchel-Legendre - ality and can be used on any convex functional - not just quadratic ones - making them applicable in a wide range of problems.
In retrospect, we realized that the "- ergy identities" satis ed by Leray's solutions for the Navier-Stokes equations are also another manifestation of the concept of self-duality in the context of evolution equations.
Convex Analysis on Phase Space.- Legendre-Fenchel Duality on Phase Space.- Self-dual Lagrangians on Phase Space.- Skew-Adjoint Operators and Self-dual Lagrangians.- Self-dual Vector Fields and Their Calculus.- Completely Self-Dual Systems and their Lagrangians.- Variational Principles for Completely Self-dual Functionals.- Semigroups of Contractions Associated to Self-dual Lagrangians.- Iteration of Self-dual Lagrangians and Multiparameter Evolutions.- Direct Sum of Completely Self-dual Functionals.- Semilinear Evolution Equations with Self-dual Boundary Conditions.- Self-Dual Systems and their Antisymmetric Hamiltonians.- The Class of Antisymmetric Hamiltonians.- Variational Principles for Self-dual Functionals and First Applications.- The Role of the Co-Hamiltonian in Self-dual Variational Problems.- Direct Sum of Self-dual Functionals and Hamiltonian Systems.- Superposition of Interacting Self-dual Functionals.- Perturbations of Self-Dual Systems.- Hamiltonian Systems of Partial Differential Equations.- The Self-dual Palais-Smale Condition for Noncoercive Functionals.- Navier-Stokes and other Self-dual Nonlinear Evolutions.
Reihe/Serie | Springer Monographs in Mathematics |
---|---|
Zusatzinfo | XIV, 354 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
ISBN-10 | 1-4419-2744-1 / 1441927441 |
ISBN-13 | 978-1-4419-2744-6 / 9781441927446 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich