Real Mathematical Analysis - Charles Chapman Pugh

Real Mathematical Analysis

Buch | Softcover
440 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2002
Springer-Verlag New York Inc.
978-1-4419-2941-9 (ISBN)
69,54 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Berkeley, California, USA CHARLES CHAPMAN PUGH Contents 1 Real Numbers 1 1 Preliminaries 1 2 Cuts . 40 2 A Taste of Topology 51 1 Metric Space Concepts 51 2 Compactness 76 3 Connectedness 82 4 Coverings . 179 3 Exercises 186 4 Function Spaces 201 1 Uniform Convergence and CO[a, b] 201 2 Power Series .
Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is pure mathematics, and I hope it appeals to you, the budding pure mathematician. Berkeley, California, USA CHARLES CHAPMAN PUGH Contents 1 Real Numbers 1 1 Preliminaries 1 2 Cuts . . . . . 10 3 Euclidean Space . 21 4 Cardinality . . . 28 5* Comparing Cardinalities 34 6* The Skeleton of Calculus 36 Exercises . . . . . . . . 40 2 A Taste of Topology 51 1 Metric Space Concepts 51 2 Compactness 76 3 Connectedness 82 4 Coverings . . . 88 5 Cantor Sets . . 95 6* Cantor Set Lore 99 7* Completion 108 Exercises . . . 115 x Contents 3 Functions of a Real Variable 139 1 Differentiation. . . . 139 2 Riemann Integration 154 Series . . 179 3 Exercises 186 4 Function Spaces 201 1 Uniform Convergence and CO[a, b] 201 2 Power Series . . . . . . . . . . . . 211 3 Compactness and Equicontinuity in CO . 213 4 Uniform Approximation in CO 217 Contractions and ODE's . . . . . . . . 228 5 6* Analytic Functions . . . . . . . . . . . 235 7* Nowhere Differentiable Continuous Functions . 240 8* Spaces of Unbounded Functions 248 Exercises . . . . . 251 267 5 Multivariable Calculus 1 Linear Algebra . . 267 2 Derivatives. . . . 271 3 Higher derivatives . 279 4 Smoothness Classes . 284 5 Implicit and Inverse Functions 286 290 6* The Rank Theorem 296 7* Lagrange Multipliers 8 Multiple Integrals . .

1 Real Numbers.- 2 A Taste of Topology.- 3 Functions of a Real Variable.- 4 Function Spaces.- 5 Multivariable Calculus.- 6 Lebesgue Theory.

Erscheint lt. Verlag 1.12.2010
Reihe/Serie Undergraduate Texts in Mathematics
Undergraduate Texts in Mathematics
Zusatzinfo XII, 440 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4419-2941-X / 144192941X
ISBN-13 978-1-4419-2941-9 / 9781441929419
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich