Foundations of Differentiable Manifolds and Lie Groups
Seiten
2010
|
Softcover reprint of hardcover 1st ed. 1983
Springer-Verlag New York Inc.
978-1-4419-2820-7 (ISBN)
Springer-Verlag New York Inc.
978-1-4419-2820-7 (ISBN)
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.
1 Manifolds.- 2 Tensors and Differential Forms.- 3 Lie Groups.- 4 Integration on Manifolds.- 5 Sheaves, Cohomology, and the de Rham Theorem.- 6 The Hodge Theorem.- Supplement to the Bibliography.- Index of Notation.
Erscheint lt. Verlag | 1.12.2010 |
---|---|
Reihe/Serie | Graduate Texts in Mathematics ; 94 |
Zusatzinfo | X, 276 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4419-2820-0 / 1441928200 |
ISBN-13 | 978-1-4419-2820-7 / 9781441928207 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €