Dynamical Systems on Surfaces

(Autor)

Buch | Softcover
VIII, 204 Seiten
1982 | 1. Softcover reprint of the original 1st ed. 1983
Springer Berlin (Verlag)
978-3-540-11645-5 (ISBN)

Lese- und Medienproben

Dynamical Systems on Surfaces - C. Godbillon
53,49 inkl. MwSt
These notes are an elaboration of the first part of a course on foliations which I have given at Strasbourg in 1976 and at Tunis in 1977. They are concerned mostly with dynamical sys tems in dimensions one and two, in particular with a view to their applications to foliated manifolds. An important chapter, however, is missing, which would have been dealing with structural stability. The publication of the French edition was re alized by-the efforts of the secretariat and the printing office of the Department of Mathematics of Strasbourg. I am deeply grateful to all those who contributed, in particular to Mme. Lambert for typing the manuscript, and to Messrs. Bodo and Christ for its reproduction. Strasbourg, January 1979. Table of Contents I. VECTOR FIELDS ON MANIFOLDS 1. Integration of vector fields. 1 2. General theory of orbits. 13 3. Irlvariant and minimaI sets. 18 4. Limit sets. 21 5. Direction fields. 27 A. Vector fields and isotopies. 34 II. THE LOCAL BEHAVIOUR OF VECTOR FIELDS 39 1. Stability and conjugation. 39 2. Linear differential equations. 44 3. Linear differential equations with constant coefficients. 47 4. Linear differential equations with periodic coefficients. 50 5. Variation field of a vector field. 52 6. Behaviour near a singular point. 57 7. Behaviour near a periodic orbit. 59 A. Conjugation of contractions in R. 67 III. PLANAR VECTOR FIELDS 75 1. Limit sets in the plane. 75 2. Periodic orbits. 82 3. Singular points. 90 4. The Poincare index.

I. Vector Fields on Manifolds.- 1. Integration of vector fields.- 2. General theory of orbits.- 3. Invariant and minimal sets.- 4. Limit sets.- 5. Direction fields.- A. Vector fields and isotopies.- II. The Local Behaviour of Vector Fields.- 1. Stability and conjugation.- 2. Linear differential equations.- 3. Linear differential equations with constant coefficients.- 4. Linear differential equations with periodic coefficients.- 5. Variation field of a vector field.- 6. Behaviour near a singular point.- 7. Behaviour near a periodic orbit.- A. Conjugation of contractions in R.- III. Planar Vector Fields.- 1. Limit sets in the plane.- 2. Periodic orbits.- 3. Singular points.- 4. The Poincaré index.- 5. Planar direction fields.- 6. Direction, fields on cylinders and Moebius strips.- A. Singular generic foliations of a disc.- IV. Direction Fields on the Torus and Homeomorphisms of the Circle.- 1. Direction fields on the torus.- 2. Direction fields on a Klein bottle.- 3. Homeomorphisms of the circle without periodic point.- 4. Rotation number of Poincaré.- 5. Conjugation of circle homeomorphisms to rotations.- A. Homeomorphism groups of an interval.- B. Homeomorphism groups of the circle.- V. Vector Fields on Surfaces.- 1. Classification of compact surfaces.- 2. Vector fields on surfaces.- 3. The index theorem.- A. Elements of differential geometry of surfaces.

Erscheint lt. Verlag 1.11.1982
Reihe/Serie Universitext
Übersetzer H.G. Helfenstein
Zusatzinfo VIII, 204 p.
Verlagsort Berlin
Sprache englisch
Maße 170 x 244 mm
Gewicht 354 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Blätterung (Math.) • Dynamical system • Dynamical Systems • Dynamisches System • Oberfläche • Surfaces • Systemdynamik
ISBN-10 3-540-11645-1 / 3540116451
ISBN-13 978-3-540-11645-5 / 9783540116455
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99