Privacy-Preserving Data Mining -

Privacy-Preserving Data Mining

Models and Algorithms
Buch | Softcover
514 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2008
Springer-Verlag New York Inc.
978-1-4419-4371-2 (ISBN)
213,99 inkl. MwSt
This book proposes a number of techniques to perform data mining tasks in a privacy-preserving way. The survey information included with each chapter is unique in terms of its focus on introducing the different topics more comprehensively.
Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes.


Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques.


This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions.


Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.


 

An Introduction to Privacy-Preserving Data Mining.- A General Survey of Privacy-Preserving Data Mining Models and Algorithms.- A Survey of Inference Control Methods for Privacy-Preserving Data Mining.- Measures of Anonymity.- k-Anonymous Data Mining: A Survey.- A Survey of Randomization Methods for Privacy-Preserving Data Mining.- A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining.- A Survey of Quantification of Privacy Preserving Data Mining Algorithms.- A Survey of Utility-based Privacy-Preserving Data Transformation Methods.- Mining Association Rules under Privacy Constraints.- A Survey of Association Rule Hiding Methods for Privacy.- A Survey of Statistical Approaches to Preserving Confidentiality of Contingency Table Entries.- A Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data.- A Survey of Privacy-Preserving Methods Across Vertically Partitioned Data.- A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods.- Private Data Analysis via Output Perturbation.- A Survey of Query Auditing Techniques for Data Privacy.- Privacy and the Dimensionality Curse.- Personalized Privacy Preservation.- Privacy-Preserving Data Stream Classification.

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Advances in Database Systems ; 34
Zusatzinfo XXII, 514 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Kryptologie
Informatik Weitere Themen Hardware
ISBN-10 1-4419-4371-4 / 1441943714
ISBN-13 978-1-4419-4371-2 / 9781441943712
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90