Degeneration of Abelian Varieties - Gerd Faltings, Ching-Li Chai

Degeneration of Abelian Varieties

Buch | Softcover
XII, 318 Seiten
2010 | 1. Softcover reprint of the original 1st ed. 1990
Springer Berlin (Verlag)
978-3-642-08088-3 (ISBN)
149,79 inkl. MwSt
The topic of this book is the theory of degenerations of abelian varieties and its application to the construction of compactifications of moduli spaces of abelian varieties. These compactifications have applications to diophantine problems and, of course, are also interesting in their own right. Degenerations of abelian varieties are given by maps G - S with S an irre ducible scheme and G a group variety whose generic fibre is an abelian variety. One would like to classify such objects, which, however, is a hopeless task in this generality. But for more specialized families we can obtain more: The most important theorem about degenerations is the stable reduction theorem, which gives some evidence that for questions of compactification it suffices to study semi-abelian families; that is, we may assume that G is smooth and flat over S, with fibres which are connected extensions of abelian varieties by tori. A further assumption will be that the base S is normal, which makes such semi-abelian families extremely well behaved. In these circumstances, we give a rather com plete classification in case S is the spectrum of a complete local ring, and for general S we can still say a good deal. For a complete base S = Spec(R) (R a complete and normal local domain) the main result about degenerations says roughly that G is (in some sense) a quotient of a covering G by a group of periods.

I. Preliminaries.- II. Degeneration of Polarized Abelian Varieties.- III. Mumford's Construction.- IV. Toroidal Compactification of Ag.- V. Modular Forms and the Minimal Compactification.- VI. Eichler Integrals in Several Variables.- VII. Hecke Operators and Frobenii.- Glossary of Notations.- An Analytic Construction of Degenerating Abelian Varieties over Complete Rings.- David Mumford.

Erscheint lt. Verlag 15.12.2010
Reihe/Serie Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Zusatzinfo XII, 318 p.
Verlagsort Berlin
Sprache englisch
Maße 170 x 244 mm
Gewicht 503 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte diophantine geometry • diophantische Geometrie • Hecke Operator • Moduli Raum • moduli space • Schema • schemes • Siegel modular form • Siegelsche Modulfunktion
ISBN-10 3-642-08088-X / 364208088X
ISBN-13 978-3-642-08088-3 / 9783642080883
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00