Algebraic Complexity Theory
Springer Berlin (Verlag)
978-3-642-08228-3 (ISBN)
Peter Bürgisser is an internationally recognized expert in complexity theory. He is associate editor of the journal Computational Complexity and he was invited speaker at the 2010 International Congress Mathematicians.
1. Introduction.- I. Fundamental Algorithms.- 2. Efficient Polynomial Arithmetic.- 3. Efficient Algorithms with Branching.- II. Elementary Lower Bounds.- 4. Models of Computation.- 5. Preconditioning and Transcendence Degree.- 6. The Substitution Method.- 7. Differential Methods.- III. High Degree.- 8. The Degree Bound.- 9. Specific Polynomials which Are Hard to Compute.- 10. Branching and Degree.- 11. Branching and Connectivity.- 12. Additive Complexity.- IV. Low Degree.- 13. Linear Complexity.- 14. Multiplicative and Bilinear Complexity.- 15. Asymptotic Complexity of Matrix Multiplication.- 16. Problems Related to Matrix Multiplication.- 17. Lower Bounds for the Complexity of Algebras.- 18. Rank over Finite Fields and Codes.- 19. Rank of 2-Slice and 3-Slice Tensors.- 20. Typical Tensorial Rank.- V. Complete Problems.- 21. P Versus NP: A Nonuniform Algebraic Analogue.- List of Notation.
P. Bürgisser, M. Clausen, M.A. Shokrollahi, and T. Lickteig
Algebraic Complexity Theory
"The book contains interesting exercises and useful bibliographical notes. In short, this is a nice book."-MATHEMATICAL REVIEWS
From the reviews:
"This book is certainly the most complete reference on algebraic complexity theory that is available hitherto. ... superb bibliographical and historical notes are given at the end of each chapter. ... this book would most certainly make a great textbook for a graduate course on algebraic complexity theory. ... In conclusion, any researchers already working in the area should own a copy of this book. ... beginners at the graduate level who have been exposed to undergraduate pure mathematics would find this book accessible." (Anthony Widjaja, SIGACT News, Vol. 37 (2), 2006)
Erscheint lt. Verlag | 5.12.2010 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Mitarbeit |
Assistent: T. Lickteig |
Zusatzinfo | XXIII, 618 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 964 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Graphentheorie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Algebra • Algebraic Problems • algorithm • Algorithm analysis and problem complexity • algorithms • combinatorics • Complexity • Complexity theory • Computational Complexity • Computation trees • Computer • Computer Algebra • Geometry • Graph • Matrix • Straight line programs |
ISBN-10 | 3-642-08228-9 / 3642082289 |
ISBN-13 | 978-3-642-08228-3 / 9783642082283 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich