High Order Difference Methods for Time Dependent PDE
Springer Berlin (Verlag)
978-3-642-09439-2 (ISBN)
When are High Order Methods Effective?.- Well-posedness and Stability.- Order of Accuracy and the Convergence Rate.- Approximation in Space.- Approximation in Time.- Coupled Space-Time Approximations.- Boundary Treatment.- The Box Scheme.- Wave Propagation.- A Problem in Fluid Dynamics.- Nonlinear Problems with Shocks.- to Other Numerical Methods.
From the reviews:
"This book presents the theory and construction principles of high order finite difference methods (FDM) for numerical solving of time dependent partial differential equations. ... Many types of finite difference schemes are completely studied and numerical experiments and graphs are presented. ... The book is written in a clear and comprehensive manner. It is recommended to researchers, PD students and readers interested in effective methods for numerical solving of partial differential equations." (Snezhana Gocheva-Ilieva, Zentralblatt MATH, Vol. 1146, 2008)
Erscheint lt. Verlag | 25.11.2010 |
---|---|
Reihe/Serie | Springer Series in Computational Mathematics |
Zusatzinfo | XVI, 334 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 532 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Approximation • difference methods • high order • initial-boundary value problems • partial differential equation • Partial differential equations • stability • wave propagation |
ISBN-10 | 3-642-09439-2 / 3642094392 |
ISBN-13 | 978-3-642-09439-2 / 9783642094392 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich