Algebraic Combinatorics on Words
Seiten
2011
Cambridge University Press (Verlag)
978-0-521-18071-9 (ISBN)
Cambridge University Press (Verlag)
978-0-521-18071-9 (ISBN)
Combinatorics on words appears in many different areas of mathematics and theoretical computer science. With background material, full proofs whenever possible, and a discussion of further developments, this 2002 book is both a comprehensive introduction to the subject and a valuable reference source for researchers.
Combinatorics on words has arisen independently within several branches of mathematics, for instance number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's book Combinatorics on Words. Originally published in 2002, this book presents several more topics and provides deeper insights into subjects discussed in the previous volume. An introductory chapter provides the reader with all the necessary background material. There are numerous examples, full proofs whenever possible and a notes section discussing further developments in the area. This book is both a comprehensive introduction to the subject and a valuable reference source for researchers.
Combinatorics on words has arisen independently within several branches of mathematics, for instance number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's book Combinatorics on Words. Originally published in 2002, this book presents several more topics and provides deeper insights into subjects discussed in the previous volume. An introductory chapter provides the reader with all the necessary background material. There are numerous examples, full proofs whenever possible and a notes section discussing further developments in the area. This book is both a comprehensive introduction to the subject and a valuable reference source for researchers.
1. Finite and infinite words J. Berstel and D. Perrin; 2. Sturmian words J. Berstel and P. Séébold; 3. Unavoidable patterns J. Cassaigne; 4. Sesquipowers A. De Luca and S. Varricchio; 5. The plactic monoid A. Lascoux, B. Leclerc and J.-Y. Thibon; 6. Codes V. Bruyère; 7. Numeration systems C. Frougny; 8. Periodicity F. Mignosi and A. Restivo; 9. Centralisers of noncommutative series and polynomials C. Reutenauer; 10. Transformations on words and q-calculus D. Foata and G.-N. Han; 11. Statistics on permutations and words J. Désarménien; 12. Makanin's algorithm V. Diekert; 13. Independent systems of equations T. Harju, J. Karhumäki and W. Plandowski.
Reihe/Serie | Encyclopedia of Mathematics and its Applications |
---|---|
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 820 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
ISBN-10 | 0-521-18071-6 / 0521180716 |
ISBN-13 | 978-0-521-18071-9 / 9780521180719 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €