Mathematical Methods of Classical Mechanics
Springer-Verlag New York Inc.
978-0-387-96890-2 (ISBN)
I Newtonian Mechanics.- 1 Experimental facts.- 2 Investigation of the equations of motion.- II Lagrangian Mechanics.- 3 Variational principles.- 4 Lagrangian mechanics on manifolds.- 5 Oscillations.- 6 Rigid bodies.- III Hamiltonian Mechanics.- 7 Differential forms.- 8 Symplectic manifolds.- 9 Canonical formalism.- 10 Introduction to perturbation theory.- Appendix 1 Riemannian curvature.- Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids.- Appendix 3 Symplectic structures on algebraic manifolds.- Appendix 4 Contact structures.- Appendix 5 Dynamical systems with symmetries.- Appendix 6 Normal forms of quadratic hamiltonians.- Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories.- Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov’s theorem.- Appendix 9 Poincaré’s geometric theorem, its generalizations and applications.- Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters.- Appendix 11 Short wave asymptotics.- Appendix 12 Lagrangian singularities.- Appendix 13 The Korteweg-de Vries equation.- Appendix 14 Poisson structures.- Appendix 15 On elliptic coordinates.- Appendix 16 Singularities of ray systems.
Erscheint lt. Verlag | 5.9.1997 |
---|---|
Reihe/Serie | Graduate Texts in Mathematics ; 60 |
Übersetzer | K. Vogtmann, A. Weinstein |
Zusatzinfo | XVI, 520 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
ISBN-10 | 0-387-96890-3 / 0387968903 |
ISBN-13 | 978-0-387-96890-2 / 9780387968902 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich