
Function Theory in the Unit Ball of Cn
Springer-Verlag New York Inc.
978-0-387-90514-3 (ISBN)
- Titel gebraucht verfügbar
- Artikel merken
Once one has seen these in this simple context, it should be much easier to learn the more complicated machinery (developed largely by Henkin and his co-workers) that extends them to arbitrary strictly pseudoconvex domains. In some parts of the book (for instance, in Chapters 14-16) it would, however, have been unnatural to confine our attention exclusively to the ball, and no significant simplifications would have resulted from such a restriction.
1 Preliminaries.- 1.1 Some Terminology.- 1.2 The Cauchy Formula in Polydiscs.- 1.3 Differentiation.- 1.4 Integrals over Spheres.- 1.5 Homogeneous Expansions.- 2 The Automorphisms of B.- 2.1 Cartan's Uniqueness Theorem.- 2.2 The Automorphisms.- 2.3 The Cayley Transform.- 2.4 Fixed Points and Affine Sets.- 3 Integral Representations.- 3.1 The Bergman Integral in B.- 3.2 The Cauchy Integral in B.- 3.3 The Invariant Poisson Integral in B.- 4 The Invariant Laplacian.- 4.1 The Operator $$ /tilde /Delta $$.- 4.2 Eigenfunctions of $$ /tilde /Delta $$.- 4.3 ?-Harmonic Functions.- 4.4 Pluriharmonic Functions.- 5 Boundary Behavior of Poisson Integrals.- 5.1 A Nonisotropic Metric on S.- 5.2 The Maximal Function of a Measure on S.- 5.3 Differentiation of Measures on S.- 5.4 K-Limits of Poisson Integrals.- 5.5 Theorems of Calderon, Privalov, Plessner.- 5.6 The Spaces N(B) and Hp(B).- 5.7 Appendix: Marcinkiewicz Interpolation.- 6 Boundary Behavior of Cauchy Integrals.- 6.1 An Inequality.- 6.2 Cauchy Integrals of Measures.- 6.3 Cauchy Integrals of Lp-Functions.- 6.4 Cauchy Integrals of Lipschitz Functions.- 6.5 Toeplitz Operators.- 6.6 Gleason's Problem.- 7 Some Lp-Topics.- 7.1 Projections of Bergman Type.- 7.2 Relations between Hp and Lp ? H.- 7.3 Zero-Varieties.- 7.4 Pluriharmonic Majorants.- 7.5 The Isometries of Hp(B).- 8 Consequences of the Schwarz Lemma.- 8.1 The Schwarz Lemma in B.- 8.2 Fixed-Point Sets in B.- 8.3 An Extension Problem.- 8.4 The Lindelof-?irka Theorem.- 8.5 The Julia-Caratheodory Theorem.- 9 Measures Related to the Ball Algebra.- 9.1 Introduction.- 9.2 Valskii's Decomposition.- 9.3 Henkin's Theorem.- 9.4 A General Lebesgue Decomposition.- 9.5 A General F. and M. Riesz Theorem.- 9.6 The Cole-Range Theorem.- 9.7 Pluriharmonic Majorants.- 9.8 The Dual Space of A(B).- 10 Interpolation Sets for the Ball Algebra.- 10.1 Some Equivalences.- 10.2 A Theorem of Varopoulos.- 10.3 A Theorem of Bishop.- 10.4 The Davie-Oksendal Theorem.- 10.5 Smooth Interpolation Sets.- 10.6 Determining Sets.- 10.7 Peak Sets for Smooth Functions.- 11 Boundary Behavior of H?-Functions.- 11.1 A Fatou Theorem in One Variable.- 11.2 Boundary Values on Curves in S.- 11.3 Weak*-Convergence.- 11.4 A Problem on Extreme Values.- 12 Unitarily Invariant Function Spaces.- 12.1 Spherical Harmonics.- 12.2 The Spaces H(p, q).- 12.3 U-Invariant Spaces on S.- 12.4 U-Invariant Subalgebras of C(S).- 12.5 The Case n = 2.- 13 Moebius-Invariant Function Spaces.- 13.1.?-Invariant Spaces on S.- 13.2.?-Invariant Subalgebras of C0(B).- 13.3.?-Invariant Subspaces of C(B).- 13.4 Some Applications.- 14 Analytic Varieties.- 14.1 The Weierstrass Preparation Theorem.- 14.2 Projections of Varieties.- 14.3 Compact Varieties in ?n.- 14.4 Hausdorff Measures.- 15 Proper Holomorphic Maps.- 15.1 The Structure of Proper Maps.- 15.2 Balls vs. Polydiscs.- 15.3 Local Theorems.- 15.4 Proper Maps from B to B.- 15.5 A Characterization of B.- 16 The $$ {/bar /partial } $$ -Problem.- 16.1 Differential Forms.- 16.2 Differential Forms in ?n.- 16.3 The $$ {/bar /partial } $$ -Problem with Compact Support.- 16.4 Some Computations.- 16.5 Koppelman's Cauchy Formula.- 16.6 The $$ {/bar /partial } $$ -Problem in Convex Regions.- 16.7 An Explicit Solution in B.- 17 The Zeros of Nevanlinna Functions.- 17.1 The Henkin-Skoda Theorem.- 17.2 Plurisubharmonic Functions.- 17.3 Areas of Zero-Varieties.- 18 Tangential Cauchy-Riemann Operators.- 18.1 Extensions from the Boundary.- 18.2 Unsolvable Differential Equations.- 18.3 Boundary Values of Pluriharmonic Functions.- 19 Open Problems.- 19.1 The Inner Function Conjecture.- 19.2 RP-Measures.- 19.3 Miscellaneous Problems.
Reihe/Serie | Grundlehren der Mathematischen Wissenschaften ; 241 |
---|---|
Zusatzinfo | biography |
Verlagsort | New York, NY |
Sprache | englisch |
Gewicht | 790 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 0-387-90514-6 / 0387905146 |
ISBN-13 | 978-0-387-90514-3 / 9780387905143 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich