Tensoren und Felder

Buch | Softcover
VIII, 537 Seiten
1995
Springer Wien (Verlag)
978-3-211-82754-3 (ISBN)

Lese- und Medienproben

Tensoren und Felder - Hans-Jörg Dirschmid
54,99 inkl. MwSt
Das Lehrbuch soll Studierende mit Grundkenntnissen der Differential- und Integralrechnung in die klassische Feldtheorie mit modernen mathematischen Methoden einführen. Dementsprechend ist die Tensoranalysis das mathematische Thema, das Prinzip der Relativität das physikalische. Aus didaktischen Erwägungen gliedert sich der Text in zwei Teile. Um den Leser mit den Objekten vertraut zu machen, wird zunächst der affine und euklidische Raum zugrundegelegt, um verallgemeinernd zur Geometrie auf Mannigfaltigkeiten und Riemannschen Räumen überleiten zu können. Im Anschluß an die mathematische Theorie wird in die spezielle und allgemeine Relativitätstheorie eingeführt, wobei die Geometrie der Raum-Zeit, die Grundgesetze der Elektrodynamik und der Gravitation sowie Folgerungen zur Sprache kommen.

1 Die linearen Strukturen.- 1.1 Der lineare Vektorraum.- 1.2 Teilräume und Faktorräume.- 1.3 Lineare Abbildungen.- 1.4 Duale Vektorräume.- 1.5 Determinantenfunktionen.- 1.6 Orientierte Vektorräume.- 1.7 Euklidische Vektorräume.- 1.8 Übungsbeispiele.- 2 Tensoralgebra.- 2.1 Tensoren.- 2.2 Addition und Multiplikation.- 2.3 Darstellung der Tensoren.- 2.4 Tensoren in euklidischen Vektorräumen.- 2.5 Verjüngung.- 2.6 Tensorkoordinaten und indizierte Größen.- 2.7 Symmetrieeigenschaften von Tensoren.- 2.8 Schiefsymmetrische Tensoren.- 2.9 Duale Tensoren.- 2.10 Übungsbeispiele.- 3 Tensoren in ebenen Räumen.- 3.1 Der affine Raum.- 3.2 Skalar- und Vektorfelder.- 3.3 Tensorfelder.- 3.4 Differentiation der Tensorfelder.- 3.5 Differentialformen.- 3.6 Euklidische Räume.- 3.7 Integration der Differentialformen.- 3.8 Das Kodifferential.- 3.9 Übungsbeispiele.- 4 Spezielle Relativitätstheorie.- 4.1 Gradient, Divergenz und Rotation.- 4.2 Die Maxwellschen Gleichungen.- 4.3 Relativistische Mechanik.- 4.4 Relativistische Elektrodynamik.- 4.5 Übungsbeispiele.- 5 Tensoren in gekrümmten Räumen.- 5.1 Differenzierbare Mannigfaltigkeiten.- 5.2 Tensorfelder.- 5.3 Differentialformen.- 5.4 Integration der Differentialformen.- 5.5 Parallelverschiebung.- 5.6 Differentiation der Tensorfelder.- 5.7 Riemannsche Räume.- 5.8 Übungsbeispiele.- 6 Allgemeine Relativitätstheorie.- 6.1 Gravitation.- 6.2 Die vierdimensionale gekrümmte Welt.- 6.3 Die Newtonsche Gravitationstheorie.- 6.4 Das Einsteinsche Gravitationsgesetz.- 6.5 Das linearisierte Gravitationsgesetz. Gravitationswellen.- 6.6 Das Gravitationsfeld einer Einzelmasse.- 6.7 Schwarzschild-Geometrie.- 6.8 Übungsbeispiele.- Lösungen der Übungsbeispiele.- Literatur.

Erscheint lt. Verlag 30.11.1995
Reihe/Serie SpringerMathematik
Zusatzinfo VIII, 537 S. 8 Abb.
Verlagsort Vienna
Sprache deutsch
Gewicht 1000 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte allgemeine Relativitätstheorie • Differentialgeometrie • Feld (Physik) • Gravitation • HC/Mathematik/Geometrie • HC/Physik, Astronomie/Allgemeines, Lexika • Mannigfaltigkeit • Relativität • Relativitätstheorie • Relativitätstheorie,Gravitation,Differentialgeomet • Relativitätstheorie,Gravitation,Differentialgeometrie • spezielle Relativitätstheorie • Tensoranalysis • Tensorrechnung
ISBN-10 3-211-82754-4 / 3211827544
ISBN-13 978-3-211-82754-3 / 9783211827543
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95