Complex Manifolds and Deformation of Complex Structures
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
978-0-387-96188-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
1 Holomorphic Functions.- 1.1. Holomorphic Functions.- 1.2. Holomorphic Map.- 2 Complex Manifolds.- 2.1. Complex Manifolds.- 2.2. Compact Complex Manifolds.- 2.3. Complex Analytic Family.- 3 Differential Forms, Vector Bundles, Sheaves.- 3.1. Differential Forms.- 3.2. Vector Bundles.- 3.3. Sheaves and Cohomology.- 3.4. de Rham's Theorem and Dolbeault's Theorem.- 3.5. Harmonic Differential Forms.- 3.6. Complex Line Bundles.- 4 Infinitesimal Deformation.- 4.1. Differentiable Family.- 4.2. Infinitesimal Deformation.- 5 Theorem of Existence.- 5.1. Obstructions.- 5.2. Number of Moduli.- 5.3. Theorem of Existence.- 6 Theorem of Completeness.- 6.1. Theorem of Completeness.- 6.2. Number of Moduli.- 6.3. Later Developments.- 7 Theorem of Stability.- 7.1. Differentiable Family of Strongly Elliptic Differential Operators.- 7.2. Differentiable Family of Compact Complex Manifolds.- Appendix Elliptic Partial Differential Operators on a Manifold.- 1. Distributions on a Torus.- 2. Elliptic Partial Differential Operators on a Torus.- 3. Function Space of Sections of a Vector Bundle.- 4. Elliptic Linear Partial Differential Operators.- 5. The Existence of Weak Solutions of a Strongly Elliptic Partial Differential Equation.- 6. Regularity of Weak Solutions of Elliptic Linear Partial Differential Equations.
Erscheint lt. Verlag | 1.11.1985 |
---|---|
Reihe/Serie | Grundlehren der Mathematischen Wissenschaften ; 283 |
Übersetzer | Kunihiko Kodaira |
Zusatzinfo | biography |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 820 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 0-387-96188-7 / 0387961887 |
ISBN-13 | 978-0-387-96188-0 / 9780387961880 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich