Quantentheorie (eBook)

Grundlagen der modernen Physik
eBook Download: PDF | EPUB
2015 | 5. Auflage
128 Seiten
Verlag C.H.Beck
978-3-406-68502-6 (ISBN)

Lese- und Medienproben

Quantentheorie -  Gert-Ludwig Ingold
Systemvoraussetzungen
Systemvoraussetzungen
9,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Am 14.Dezember1900 hielt Max Planck einen Vortrag, der die Physik und ihr Weltbild grundlegend verändern sollte. Planck erörterte darin die Frage, wie es wohl zur spektralen Verteilung des von einem glühenden Körper ausgehenden Lichts komme. Seine spektakuläre Antwort lautete, dass diese Energie keineswegs, wie angenommen, kontinuierlich, sondern in 'Päckchen', in Quanten, abgegeben wird. Damit war die Geburtsstunde der Quantenphysik eingeläutet, deren Aussagen und Konsequenzen das bis dahin geltende Weltbild in einer an sich für undenkbar gehaltenen Radikalität revolutionieren sollte. Obgleich jedoch die Quantenphysik inzwischen die klassische Physik Newtons als Grundlage unseres Verständnisses von der Natur und der ihr zugrundeliegenden physikalischen Gesetze abgelöst hat, fällt es allerdings den meisten von uns außerordentlich schwer, sich mit den Aussagen der Quantenphysik anzufreunden. Was nicht verwundert, scheint diese doch mit den meisten Erfahrungen in unserer 'Alltags'-Welt in einem Ausmaß zu kollidieren, dass schon der große Physiker Niels Bohr seufzte: 'Wer über die Quantentheorie nicht entsetzt ist, der hat sie nicht verstanden.' Dieses Buch vermittelt einen ebenso kompakten wie sachkundigen Überblick über die wichtigsten Aussagen der Quantenphysik und deren verblüffende Konsequenzen für unser Verständnis der Natur.

Gert-Ludwig Ingold ist Professor für Theoretische Physik an der Universität Augsburg und beschäftigt sich hauptsächlich mit quantenmechanischen Fragestellungen.

Gert-Ludwig Ingold ist Professor für Theoretische Physik an der Universität Augsburg und beschäftigt sich hauptsächlich mit quantenmechanischen Fragestellungen.

Cover 1
Titel 3
Impressum 4
Inhalt 5
1. Einleitung 7
2. Das Markenzeichen der Quantentheorie 10
2.1 Sind Naturkonstanten eigentlich konstant? 10
2.2 Ein heißes Eisen und die Anfänge der Quantentheorie 14
2.3 Winzig, aber wichtig: das Plancksche Wirkungsquant 16
3. Welle oder Teilchen? 20
3.1 Licht – Welle oder Teilchen? 21
3.2 Von Wasser- und anderen Wellen 24
3.3 Und Newton hatte doch nicht ganz unrecht 28
3.4 Nur Teilchen oder auch Welle? 30
3.5 Man kann nicht alles wissen 33
3.6 Nichts geht mehr in geregelten Bahnen 36
3.7 Mit dem Kopf durch die Wand 39
4. Maßstäbe und Uhren mit Atomen 44
4.1 Atomare Fingerabdrücke 47
4.2 Das Atom – ein kleines Planetensystem? 49
4.3 Zwei Urlauber auf Entdeckungsreise 51
4.4 Frei oder gebunden 53
4.5 Lücken im Regenbogen 56
4.6 Es muss nicht immer nur ein Zustand sein 60
4.7 Ein Springbrunnen als Uhr 64
5. Das Vakuum ist überhaupt nicht leer 72
5.1 Das Pendel kommt nicht zur Ruhe 72
5.2 Jetzt wird Licht gequetscht 76
5.3 Warum sich Spiegel anziehen können 79
6. Die Suche nach den versteckten Variablen 84
6.1 Ein Photon passt sich an 84
6.2 Verschränkte Teilchen 88
6.3 Einstein und Co. sagen: Die Quantentheorie ist unvollständig! 92
6.4 Die Quantentheorie verletzt eine Ungleichung 94
6.5 Zwei Schlupflöcher 100
7. Störende Beobachtung 103
7.1 Die Frage nach dem Weg 103
7.2 Ein Atom hinterlässt eine Botschaft 107
7.3 Der Quantenradiergummi 113
8. Von der mikroskopischen zur makroskopischen Welt 117
8.1 Rein oder Gemisch? 118
8.2 Der Einfluss der Umgebung 120
8.3 Schrödingers Kätzchen 121
Quellenverweise und Literatur 125
Register 126

2. Das Markenzeichen der Quantentheorie


Oklo (Gabun), vor fast zwei Milliarden Jahren, ein unterirdisches Uranvorkommen. Wasser dringt ein. Die beim Zerfall von Uran-235-Kernen freigesetzten Neutronen werden durch das Wasser abgebremst, eine Kettenreaktion kommt in Gang. Einige hunderttausend Jahre lang läuft ein Kernreaktor unter dem afrikanischen Kontinent.

Pierrelatte im Departement Drôme (Frankreich), 1972, in einer Urananreicherungsanlage. Bei der Analyse von Gesteinsmaterial aus den Minen von Gabun bemerkt ein Techniker, dass die Proben eine ungewöhnliche Zusammensetzung aufweisen. Es dauert nicht lange, bis die Ursache klar wird, das Geheimnis von Oklo war gelüftet. Zwar hatte Enrico Fermi dreißig Jahre zuvor in Chicago den ersten von Menschenhand geschaffenen Kernreaktor in Betrieb genommen, die Natur war ihm aber um Längen zuvorgekommen.

Die prähistorischen Reaktoren in Oklo und dem benachbarten Bangombé sind trotz ihrer Einzigartigkeit heute durch Uranabbau fast vollständig zerstört. Dabei eröffnen sie die seltene Gelegenheit zu studieren, wie sich bestimmte physikalische Vorgänge vor zwei Milliarden Jahren abgespielt haben. Warum aber kann es für den Physiker überhaupt interessant sein, so weit in die Vergangenheit zurück zu blicken?

2.1 Sind Naturkonstanten eigentlich konstant?


Ziel physikalischer Forschung ist es, eine richtige Beschreibung von Vorgängen in der unbelebten Natur zu entwickeln. Lassen sich experimentelle Beobachtungen nicht erklären oder stehen sie im Widerspruch zu theoretischen Vorhersagen, so gibt es Handlungsbedarf. Bestehende Theorien müssen dann korrigiert oder erweitert werden. Gelegentlich kann es sogar notwendig sein, eine Theorie von Grund auf neu zu entwickeln. Genau dies war zu Beginn des 20. Jahrhunderts der Fall, als sich experimentelle Befunde mehrten, die sich mit den bekannten Theorien nicht beschreiben ließen. Es bedurfte des Zusammenwirkens der brillantesten Physiker dieser Zeit, um innerhalb von 25 Jahren die Quantentheorie zu schaffen, von der in diesem Buch die Rede sein soll.

Eine physikalische Theorie soll uns jedoch nicht nur heute eine richtige Beschreibung der Natur liefern. Sie hat ihren Nutzen vor allem darin, dass sie auch in der Zukunft gültig ist und es uns damit erlaubt, Vorhersagen zu machen. Es lohnt sich aber auch, Beobachtung und Theorie in der Vergangenheit zu vergleichen, und sei es vor zwei Milliarden Jahren oder noch früher. Passt alles, so wird dies das Vertrauen in die Richtigkeit der Theorie stärken. Diskrepanzen deuten dagegen darauf hin, dass es noch etwas zu verstehen gilt.

Die Informationen aus der Vergangenheit sind natürlich begrenzt. Aus den Überresten der natürlichen Reaktoren von Oklo können wir aber zum Beispiel wertvolle Informationen über den früheren Wert bestimmter Naturkonstanten gewinnen. Dabei handelt es sich um fundamentale Größen, deren Wert sich, zumindest bis heute, nicht aus einer Theorie berechnen läßt. Naturkonstanten sind häufig charakteristisch für eine bestimmte Art von Phänomenen oder auch eine physikalische Theorie.

Ein Beispiel für eine Naturkonstante ist die Lichtgeschwindigkeit, also die Geschwindigkeit, mit der sich elektromagnetische Wellen wie Licht oder Radiowellen im Vakuum ausbreiten. Bereits Galileo Galilei hatte einen Versuch zur Messung der Geschwindigkeit von Licht angestellt, der jedoch nicht von Erfolg gekrönt war. Im Jahre 1676 bestimmte Olaf Römer durch Beobachtung der Monde des Planeten Jupiter zum ersten Mal einen, wenn auch nicht sehr präzisen Wert für die Lichtgeschwindigkeit. Gegen Ende des 19. Jahrhunderts sorgten die Experimente von Albert Abraham Michelson und Edward William Morley für Aufsehen, die nachwiesen, dass die Lichtgeschwindigkeit unabhängig von der Geschwindigkeit des Bezugssystems ist.

Normalerweise addieren sich Geschwindigkeiten. Beobachten wir zum Beispiel vom Ufer aus einen Schwimmer in einem Fluss. Die Geschwindigkeit, mit der sich der Schwimmer an uns vorbeibewegt, ergibt sich dann aus zwei Beiträgen. Zur Geschwindigkeit des Schwimmers im Wasser kommt noch die Fließgeschwindigkeit des Flusses hinzu. Ähnliches würde man auch für die Geschwindigkeit von Licht erwarten, das vom Scheinwerfer eines fahrenden Autos abgestrahlt wird. Das Ergebnis von Michelson und Morley widerspricht dieser Vermutung: Unabhängig von der Geschwindigkeit des Autos ist die Geschwindigkeit des abgestrahlten Lichts immer gleich groß.

Eine Erklärung hierfür lieferte zu Beginn des 20. Jahrhunderts Albert Einstein mit seiner speziellen Relativitätstheorie. Die Lichtgeschwindigkeit spielt hierbei eine zentrale Rolle. Nur wenn Geschwindigkeiten viel kleiner sind als die Lichtgeschwindigkeit, dürfen wir die uns aus dem Alltagsleben vertraute Mechanik verwenden. Ansonsten muss die spezielle Relativitätstheorie verwendet werden, die somit die umfassendere Theorie darstellt.

Eine andere wichtige Naturkonstante ist die Elementarladung, deren Geschichte unter anderem mit dem berühmten Millikanschen Öltröpfchenversuch verknüpft ist. Alle uns heute bekannten Elementarteilchen tragen als Ladung ein ganzzahliges Vielfaches der Elementarladung und nur bei den Quarks, noch elementareren Bausteinen der Materie, muss von Ladungen ausgegangen werden, die ein oder zwei Drittel der Elementarladung betragen. Die Elementarladung kommt immer dann ins Spiel, wenn es um die elektromagnetische Wechselwirkung, zum Beispiel die Abstoßung zwischen zwei Elektronen, geht. Die Entwicklung der klassischen Theorie der Dynamik von Ladungen und ihrer Wechselwirkungen, die so genannte Elektrodynamik, kam im 19. Jahrhundert vor allem durch die maßgeblichen Beiträge von James Clerk Maxwell zu einem Abschluss.

Es gibt keine Hinweise darauf, dass die beiden genannten und auch andere Naturkonstanten sich auf Zeitskalen von Jahren oder auch Hunderten von Jahren ändern. Es ist daher verführerisch anzunehmen, dass diese Größen schon immer den gleichen Wert hatten wie heute. Experimentelle Belege hierfür zu finden, ist meistens sehr schwierig. Es gibt jedoch Ausnahmen.

Die prähistorischen Reaktoren von Oklo und Bangombé erlauben es uns, den Wert zu bestimmen, den die Feinstrukturkonstante vor zwei Milliarden Jahren hatte. Diese Naturkonstante wurde erst 1915 von Arnold Sommerfeld im Zusammenhang mit quantentheoretischen Überlegungen zum Wasserstoffatom eingeführt. Der Wert der Feinstrukturkonstanten beträgt etwa 1/137. Sie ist jedoch auf zehn Stellen genau bekannt. Um Ähnliches beim Erdumfang zu erreichen, müsste man diesen auf ein paar Millimeter genau vermessen. Die enorme Präzision, mit der man die Feinstrukturkonstante kennt, ermöglicht es, dass die Quantenelektrodynamik, also die Quantentheorie der elektromagnetischen Wechselwirkung, die am besten überprüfte physikalische Theorie ist.

Um die Wichtigkeit der Feinstrukturkonstante in der Physik zu testen, genügt es übrigens, gegenüber einem Physiker die Zahl 137 zu erwähnen. Ein Mathematiker mag dabei vielleicht an Primzahlen denken, einem Physiker wird sicherlich sofort die Feinstrukturkonstante einfallen.

Wie steht es nun um die Konstanz der Feinstrukturkonstanten? Eine Analyse der prähistorischen Daten von Oklo zeigt beruhigenderweise, dass ihr Wert vor zwei Milliarden Jahren der gleiche war wie heute. Mehr über die Vergangenheit der Feinstrukturkonstanten lässt sich mit Hilfe von Quasaren erfahren. Diese astronomischen Objekte sind aufgrund ihrer großen Entfernung von der Erde sehr gut geeignet, um noch weiter in die Vergangenheit zu schauen. Dabei zeigen neuere Analysen zwar im Wesentlichen keine Hinweise auf eine zeitliche Veränderung der Feinstrukturkonstanten. Allerdings gibt es einen bestimmten Zeitbereich, in dem die experimentellen Daten nicht mit einer konstanten Feinstrukturkonstanten in Einklang sind. Wie ernst diese Abweichungen zu nehmen sind, bleibt zum gegenwärtigen Zeitpunkt abzuwarten.

Die Feinstrukturkonstante, deren Vergangenheit wir so gut kennen, ist eigentlich eine Kombination von drei anderen Naturkonstanten. Zwei von ihnen haben wir schon kennen gelernt: die Lichtgeschwindigkeit und die Elementarladung. Der dritte Bestandteil war am Ende des 19. Jahrhunderts noch vollkommen unbekannt, als viele schon der Meinung waren, die Physik sei praktisch abgeschlossen und es gäbe nichts wesentlich Neues mehr zu entdecken. So wurde es 1874 auch dem damals sechzehnjährigen Max Planck gesagt, der Rat bei der Wahl eines Studienfaches suchte. Letztendlich entschied er sich doch gegen Musik und Altphilologie und nahm das Studium der Physik auf, eine gute Wahl, wie wir bald sehen werden. Denn es gab noch ein paar ungelöste Probleme …

2.2 Ein heißes Eisen und die Anfänge der Quantentheorie


Erhitzt man ein Stück Eisen stark genug, so wird es rot glühend. Entsprechend sendet es im sichtbaren Bereich vor allem rotes Licht aus. Hinzu kommt noch die Infrarotstrahlung, die wir wegen ihrer kleineren Frequenz zwar nicht mehr sehen können, aber dennoch als Wärmestrahlung wahrnehmen. Es wird also Strahlung in einem ganzen Frequenzbereich abgegeben. Erhitzen wir das Metall weiter, so verschiebt sich dieser Bereich in Richtung blau, also zu größeren Frequenzen hin. Schließlich wird das gesamte sichtbare Spektrum abgedeckt. Alle Regenbogenfarben ergeben zusammengenommen weiß, wir...

Erscheint lt. Verlag 21.10.2015
Reihe/Serie Beck'sche Reihe
Beck'sche Reihe
Verlagsort München
Sprache deutsch
Themenwelt Kunst / Musik / Theater Malerei / Plastik
Sachbuch/Ratgeber Natur / Technik Naturwissenschaft
Naturwissenschaften Physik / Astronomie
Technik
ISBN-10 3-406-68502-1 / 3406685021
ISBN-13 978-3-406-68502-6 / 9783406685026
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 3,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kaleidoskop der Mathematik

von Ehrhard Behrends; Peter Gritzmann; Günter M. Ziegler

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
24,99