Data Science: Experiment, Validate, Collaborate

Buch | Softcover
54 Seiten
2024
tredition (Verlag)
978-3-384-20925-2 (ISBN)
30,00 inkl. MwSt
Data science isn't a one-shot game. Unlike traditional software development, it thrives on constant exploration. This is where experimentation reigns supreme. Forget rigid blueprints; data science projects are iterative journeys guided by the scientific method. We ask questions, form hypotheses, test them with diverse datasets, features, algorithms, and parameters. Analyzing results becomes a loop - success leads to refinement, and roadblocks spark new experiments.This focus on experimentation creates a unique validation process. Unlike software's binary "works or doesn't," data science thrives in shades of gray. One model might be "good" for one person's needs, needing further exploration for another's. Here, clear communication and collaboration are crucial. Tools like version control not only for code, but also for data and models, ensure everyone's on the same page. Experiment tracking becomes vital, documenting the "why" behind decisions and results.By embracing experimentation, data science unlocks a world of possibilities. It's not about finding the perfect answer, but continuously improving through exploration and collaboration. This is the essence of the data science experiment - where the journey itself holds the key to groundbreaking discoveries

In a world increasingly reliant on digital platforms for information dissemination, "Trusting the Web: Bots & Real Info" emerges as a vital resource. Authored by a seasoned expert in cybersecurity and information integrity, this book offers a comprehensive exploration of the intricate interplay between online content and the influence of automated bots.

Erscheinungsdatum
Verlagsort Delhi
Sprache englisch
Maße 155 x 234 mm
Gewicht 112 g
Themenwelt Geschichte Teilgebiete der Geschichte Technikgeschichte
Technik
Schlagworte Collaboration • Collaborative Methodologies • Data analysis techniques • Data Science • data validation • Experimental Design • experimentation • hands-on learning • Insightful Examples • machine learning • Practical Skills • Problem-solving Approaches • real-world applications • Statistical Analysis • Validation
ISBN-10 3-384-20925-7 / 3384209257
ISBN-13 978-3-384-20925-2 / 9783384209252
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Digitalisierung neu denken für eine gerechte Gesellschaft

von Mina Saidze

Buch | Hardcover (2023)
Quadriga (Verlag)
20,00
Vom Perceptron zum Deep Learning

von Daniel Sonnet

Buch | Softcover (2022)
Springer Vieweg (Verlag)
19,99