Growth Modeling (eBook)
537 Seiten
Guilford Publications (Verlag)
978-1-4625-2608-6 (ISBN)
Kevin J. Grimm, PhD, is Associate Professor in the Department of Psychology at Arizona State University, where he teaches graduate courses on quantitative methods. His research interests include longitudinal methodology, exploratory data analysis, and data integration, especially the integration of longitudinal studies. His recent research has focused on nonlinearity in growth models, growth mixture models, extensions of latent change score models, and approaches for analyzing change with limited dependent variables. Dr. Grimm organizes the American Psychological Association’s Advanced Training Institute on Structural Equation Modeling in Longitudinal Research and has lectured at the workshop for the past 12 years. Nilam Ram, PhD, is Associate Professor in the Department of Human Development and Family Studies and the Department of Psychology at The Pennsylvania State University. He specializes in longitudinal research methodology and lifespan development, with a focus on how multivariate time-series and growth curve modeling approaches can contribute to our understanding of behavioral change. He uses a wide variety of longitudinal models to examine changes in human behavior at multiple levels and across multiple time scales. Coupling the theory and method with data collected using mobile technologies, Dr. Ram is integrating process-oriented analytical paradigms with data visualization, gaming, experience sampling, and the delivery of individualized interventions/treatment. Ryne Estabrook, PhD, is Assistant Professor in the Department of Medical Social Sciences at Northwestern University. His research combines multivariate longitudinal methodology, open-source statistical software, and lifespan development. His methodological work pertains to developing new methods for the study of change and incorporating longitudinal and dynamic information into measurement. Dr. Estabrook is a developer of OpenMx, an open-source statistical software package for structural equation modeling and general linear algebra. He applies his methodological and statistical research to the study of lifespan development, including work on early childhood behavior and personality in late life.
I. Introduction and Organization 1. Overview, Goals of Longitudinal Research, and Historical Developments Overview Five Rationales for Longitudinal Research Historical Development of Growth Models Modeling Frameworks and Programs 2. Practical Preliminaries: Things to Do before Fitting Growth Models Data Structures Longitudinal Plots Data Screening Longitudinal Measurement Time Metrics Change Hypotheses Incomplete Data Moving Forward II. The Linear Growth Model and Its Extensions 3. Linear Growth Models Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 4. Continuous Time Metrics Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 5. Linear Growth Models with Time-Invariant Covariates Multilevel Model Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 6. Multiple-Group Growth Modeling Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 7. Growth Mixture Modeling Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Model Fit, Model Comparison, and Class Enumeration Important Considerations Moving Forward 8. Multivariate Growth Models and Dynamic Predictors Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward III. Nonlinearity in Growth Modeling 9. Introduction to Nonlinearity Organization for Nonlinear Change Models Moving Forward 10. Growth Models with Nonlinearity in Time Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 11. Growth Models with Nonlinearity in Parameters Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward 12. Growth Models with Nonlinearity in Random Coefficients Multilevel Modeling Framework Multilevel Modeling Implementation Structural Equation Modeling Framework Structural Equation Modeling Implementation Important Considerations Moving Forward IV. Modeling Change with Latent Entities 13. Modeling Change with Ordinal Outcomes Dichotomous Outcomes Polytomous Outcomes Illustration Multilevel Modeling Implementation Structural Equation Modeling Implementation Important Considerations Moving Forward 14. Modeling Change with Latent Variables Measured by Continuous Indicators Common-Factor Model Factorial Invariance over Time Second-Order Growth Model Illustration Structural Equation Modeling Implementation Important Considerations Moving Forward 15. Modeling Change with Latent Variables Measured by Ordinal Indicators Item Response Modeling Second-Order Growth Model Illustration Important Considerations Moving Forward V. Latent Change Scores as a Framework for Studying Change 16. Introduction to Latent Change Score Modeling General Model Specification Models of Change Illustration Structural Equation Modeling Implementation Important Considerations Moving Forward 17. Multivariate Latent Change Score Models Autoregressive Cross-Lag Model Multivariate Growth Model Multivariate Latent Change Score Model Illustration Structural Equation Modeling Implementation Important Considerations Moving Forward 18. Rate-of-Change Estimates in Nonlinear Growth Models Growth Rate Models Latent Change Score Models Illustration Multilevel Modeling Implementation Structural Equation Modeling Implementation Important Considerations Appendix A. A Brief Introduction to Multilevel Modeling Illustrative Example Multilevel Modeling and Longitudinal Data Appendix B. A Brief Introduction to Structural Equation Modeling Illustrative Example Structural Equation Modeling and Longitudinal Data References Author Index Subject Index About the Authors
Erscheint lt. Verlag | 30.9.2016 |
---|---|
Reihe/Serie | Methodology in the Social Sciences |
Sprache | englisch |
Maße | 180 x 180 mm |
Themenwelt | Geisteswissenschaften ► Psychologie ► Entwicklungspsychologie |
Sozialwissenschaften ► Pädagogik | |
Sozialwissenschaften ► Soziologie ► Empirische Sozialforschung | |
Schlagworte | advanced quantitative techniques • Growth Curve Models • growth mixture models • Item response theory • Linear • Longitudinal data analysis • Mixed-Effects Models • Multilevel Modeling • multiple groups • multivariate • Nonlinear • Research methods • SEM • Statistics • Structural Equation Modeling • "substance abuse, behavior change, psychotherapy, interventions, addictions, ambivalence, resistance, therapy, counseling field, counseling students, interviewing skills, meth addiction, life coaching, helping professionals, therapeutic relationship, helping professions, professional counselor, core concepts, social workers, transpersonal, rationales, person-centered, exam, cognitive-behavioral, court-ordered, modality, clinicians, evidence-based, revisions, trainers, therapists, counselors, seminar, exerci |
ISBN-10 | 1-4625-2608-X / 146252608X |
ISBN-13 | 978-1-4625-2608-6 / 9781462526086 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich