Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition (eBook)

Significant Advances in Data Acquisition, Signal Processing and Classification
eBook Download: PDF
2013 | 2014
XIX, 162 Seiten
Springer International Publishing (Verlag)
978-3-319-02639-8 (ISBN)

Lese- und Medienproben

Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition - Gaetano Valenza, Enzo Pasquale Scilingo
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition proposes a novel probabilistic approach based on the point-process theory in order to model and characterize the instantaneous ANS nonlinear dynamics providing a foundation from which machine 'understanding' of emotional response can be enhanced. Using mathematics and signal processing, this work also contributes to pragmatic issues such as emotional and mood-state modeling, elicitation, and non-invasive ANS monitoring. Throughout the text a critical review on the current state-of-the-art is reported, leading to the description of dedicated experimental protocols, novel and reliable mood models, and novel wearable systems able to perform ANS monitoring in a naturalistic environment. Biomedical engineers will find this book of interest, especially those concerned with nonlinear analysis, as will researchers and industrial technicians developing wearable systems and sensors for ANS monitoring.

Associate Professor Scilingo has worked for several years in the field of wearable monitoring systems, signal processing, human-computer interfaces and biomedical applications. He is author of hundreds of international scientific contributions in these fields and currently he is coordinating a European project focused on personalized health systems for mental care. More specifically, patients suffering from mood disorders are monitored by means of wearable systems acquiring a wide set of physiological signals and other behavioural and environmental parameters. Most of the results reported in this book are achieved within the framework of this project, through which Doctor Valenza has been focusing on statistical and nonlinear biomedical signal processing, cardiovascular and neural modeling, and wearable systems for physiological monitoring.
He is author of tens of international scientific papers in these fields and currently he is working with the University of Pisa (Italy), and the neuro-cardiovascular signal processing unit of the Massachusetts General Hospital, Harvard Medical School, Boston, (MA, USA), and Massachusetts Institute of Technology, Cambridge, (MA, USA).

Associate Professor Scilingo has worked for several years in the field of wearable monitoring systems, signal processing, human-computer interfaces and biomedical applications. He is author of hundreds of international scientific contributions in these fields and currently he is coordinating a European project focused on personalized health systems for mental care. More specifically, patients suffering from mood disorders are monitored by means of wearable systems acquiring a wide set of physiological signals and other behavioural and environmental parameters. Most of the results reported in this book are achieved within the framework of this project, through which Doctor Valenza has been focusing on statistical and nonlinear biomedical signal processing, cardiovascular and neural modeling, and wearable systems for physiological monitoring.He is author of tens of international scientific papers in these fields and currently he is working with the University of Pisa (Italy), and the neuro-cardiovascular signal processing unit of the Massachusetts General Hospital, Harvard Medical School, Boston, (MA, USA), and Massachusetts Institute of Technology, Cambridge, (MA, USA).

Emotions and Mood States: Modeling, Elicitation, and Classification through Autonomic Patterns.- Gathering Data from the Autonomic Nervous System: Experimental Procedures and Wearable Monitoring Systems.- Methodology of Advanced Signal Processing and Modeling.- Experimental Evidences on Healthy Subjects and Bipolar Patients.- Discussion on mood and emotional-state recognition using the Autonomic Nervous System Dynamics.- Summary of the Book and Direction for Future Research.

Erscheint lt. Verlag 29.10.2013
Reihe/Serie Series in BioEngineering
Series in BioEngineering
Zusatzinfo XIX, 162 p. 49 illus., 36 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Geisteswissenschaften
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie
Technik Elektrotechnik / Energietechnik
Schlagworte Advanced Statistical and Nonlinear Signal Processing • Affective computing • Autonomic Nervous System Dynamics • emotion recognition • Mood Recognition • physiological modeling • Wearable Monitoring Systems
ISBN-10 3-319-02639-9 / 3319026399
ISBN-13 978-3-319-02639-8 / 9783319026398
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43