Long-Term Health State Estimation of Energy Storage Lithium-Ion Battery Packs
Springer Verlag, Singapore
978-981-99-5343-1 (ISBN)
Qi Huang is the president of Southwest University of Science and Technology, China. He is an IEEE fellow (Conference Secretary General). He is an authoritative expert in the field of power systems and energy internet research. He is the head of NELab. He has published 2 Wiley-IEE monographs and more than 300 academic papers. He has applied for more than 100 patents, and he has been granted more than 60 national invention patents and 1 American patent. Shunli Wang is a professor at the Southwest University of Science and Technology, China. He is an authoritative expert in the field of new energy research. He is the deputy head of NELab, modeling, and state estimation strategy research for lithium-ion batteries. He has undertaken more than 40 projects and 30 patents, published more than 150 research papers as well as won 20 awards such as the Young Scholar and Science & Technology Progress Awards. Zonghai Chen is a professor at the University of Science and Technologyof China, China. His research interests include energy saving and new energy vehicle technology, complex system modeling, simulation and control, fuel cell system management, and optimal control. He has published more than 400 academic papers and applied for more than 40 patents. Ran Xiong is a postgraduate student at Southwest University of Science and Technology, China. He is one of the group leaders of NELab. He is responsible for the electrochemical modeling and the health state estimation of energy storage batteries in NELab. He has participated in 5 projects and 6 patents, assisted in writing 3 academic monographs, and published 4 research papers as the first author or corresponding author, including 3 SCI papers. Carlos Fernandez is a senior lecturer at Robert Gordon University, Scotland. He received his Ph.D. in Electrocatalytic Reactions from The University of Hull and then worked as a consultant technologist in Hull and in a post-doctoral position in Manchester. His research interests include Analytical Chemistry, Sensors and Materials, and Renewable Energy. Daniel-I. Stroe is an associate professor with AAU Energy, Aalborg University, Denmark, and the leader of the Batteries research group. He received his Ph.D. degree in lifetime modeling of lithium-ion batteries from Aalborg University in 2010. He has co-authored one book and over 150 scientific peer-review publications on battery performance, modeling, and state estimation. His research interests include energy storage systems for grid and e-mobility, lithium-based battery testing, modeling, lifetime estimation, and diagnostics.
lt;p>Chapter 1 Introduction.- Chapter 2 Electrochemical modeling of energy storage lithium battery.- Chapter 3 Extraction of multidimensional health indicators based on lithium-ion batteries.- Chapter 4 Research on health state estimation method of the lithium-ion battery pack.- Chapter 5 Experimental verification and analysis of health state estimation for lithium-ion battery pack.
Erscheinungsdatum | 24.08.2023 |
---|---|
Zusatzinfo | 43 Illustrations, color; 1 Illustrations, black and white; XI, 92 p. 44 illus., 43 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Chemie | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | back propagation neural network • Battery characteristics • Battery health state • data-driven model • Degradation mode • electrochemical model • Energy Storage • Extended single particle model • Lithium-Ion Battery • machine learning • Multi-cell model of battery pack • parameter identification |
ISBN-10 | 981-99-5343-X / 981995343X |
ISBN-13 | 978-981-99-5343-1 / 9789819953431 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich