Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Cauchy Problem for Differential Operators with Double Characteristics - Tatsuo Nishitani

Cauchy Problem for Differential Operators with Double Characteristics

Non-Effectively Hyperbolic Characteristics
Buch | Softcover
VIII, 213 Seiten
2017 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-67611-1 (ISBN)
26,74 inkl. MwSt
Jetzt zum Sonderpreis
Listenpreis (bisher): 53,49 €
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di erential operators with non-e ectively hyperbolic double characteristics. Previously scattered over numerous di erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.
A doubly characteristic point of a di erential operator P of order m (i.e. one where Pm = dPm = 0) is e ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-e ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between -Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insu cient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.

1. Introduction.- 2 Non-effectively hyperbolic characteristics.- 3 Geometry of bicharacteristics.- 4 Microlocal energy estimates and well-posedness.- 5 Cauchy problem-no tangent bicharacteristics. - 6 Tangent bicharacteristics and ill-posedness.- 7 Cauchy problem in the Gevrey classes.- 8 Ill-posed Cauchy problem, revisited.- References.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo VIII, 213 p. 7 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 346 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte Cauchy problem • Differential calculus & equations • Differential calculus & equations • Gevrey classes • IPH condition • Mathematics • mathematics and statistics • Microlocal energy estimates • Non-effectively hyperbolic • Ordinary differential equations • Partial differential equations • Tangent bicharacteristic • Transition of spectral type • Well/ill-posedness
ISBN-10 3-319-67611-3 / 3319676113
ISBN-13 978-3-319-67611-1 / 9783319676111
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
84,99