Cauchy Problem for Differential Operators with Double Characteristics
Non-Effectively Hyperbolic Characteristics
Seiten
2017
|
1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-67611-1 (ISBN)
Springer International Publishing (Verlag)
978-3-319-67611-1 (ISBN)
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di erential operators with non-e ectively hyperbolic double characteristics. Previously scattered over numerous di erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.
A doubly characteristic point of a di erential operator P of order m (i.e. one where Pm = dPm = 0) is e ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-e ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between -Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insu cient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
A doubly characteristic point of a di erential operator P of order m (i.e. one where Pm = dPm = 0) is e ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-e ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between -Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insu cient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
1. Introduction.- 2 Non-effectively hyperbolic characteristics.- 3 Geometry of bicharacteristics.- 4 Microlocal energy estimates and well-posedness.- 5 Cauchy problem-no tangent bicharacteristics. - 6 Tangent bicharacteristics and ill-posedness.- 7 Cauchy problem in the Gevrey classes.- 8 Ill-posed Cauchy problem, revisited.- References.
Erscheinungsdatum | 26.01.2018 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VIII, 213 p. 7 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 346 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Cauchy problem • Differential calculus & equations • Differential calculus & equations • Gevrey classes • IPH condition • Mathematics • mathematics and statistics • Microlocal energy estimates • Non-effectively hyperbolic • Ordinary differential equations • Partial differential equations • Tangent bicharacteristic • Transition of spectral type • Well/ill-posedness |
ISBN-10 | 3-319-67611-3 / 3319676113 |
ISBN-13 | 978-3-319-67611-1 / 9783319676111 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
89,95 €
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €