Quadratic Residues and Non-Residues

Selected Topics

(Autor)

Buch | Softcover
XIII, 292 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-45954-7 (ISBN)

Lese- und Medienproben

Quadratic Residues and Non-Residues - Steve Wright
58,84 inkl. MwSt

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet's Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

After earning degrees in mathematics from Western Kentucky University and Indiana University, the author joined the faculty at Oakland University, where he is now Professor of Mathematics in the Department of Mathematics and Statistics. He currently occupies his time studying number theory.

Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime.- Chapter 2. Basic Facts.- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity.- Chapter 4. Four Interesting Applications of Quadratic Reciprocity.- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications.- Chapter 6. Elementary Proofs.- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues.- Chapter 8. Dirichlet's Class-Number Formula.- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression.- Chapter 10. Are quadratic residues randomly distributed?.- Bibliography.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo XIII, 292 p. 20 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte 11-XX • 12D05, 13B05, 52C05, 42A16, 42A20 • Algebra • Algebraic Geometry • Commutative rings and algebras • convex and discrete Geometry • Discrete Mathematics • distribution of quadratic residues • Field theory and polynomials • fourier analysis • Functional analysis and transforms • law of quadratic reciprocity • mathematics and statistics • Number Theory • quadratic non-residues • quadratic residues • quadratic residues in arithmetic progression
ISBN-10 3-319-45954-6 / 3319459546
ISBN-13 978-3-319-45954-7 / 9783319459547
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90

von Martin Aigner; Günter M. Ziegler

Buch | Hardcover (2018)
Springer Berlin (Verlag)
58,84