Notes on the Infinity Laplace Equation
Springer International Publishing (Verlag)
978-3-319-31531-7 (ISBN)
Peter LindqvistProfessor of Mathematics Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim, Norway Research interests: Analysis, in particular partial differential equations and "nonlinear potential theory"
1 Introduction.- 2 Preliminaries.- 3 Variational Solutions.- 4 Viscosity Solutions.- 5 An Asymptotic Mean Value Formula.- 6 Comparison with Cones.- 7 From the Theory of Viscosity Solutions.- 8 Uniqueness of Viscosity Solutions.- 9 Tug-of-War.- 10 The Equation 1v = F.
"This book is an excellent introduction to the infinity Laplacian- it is informative and has up-to-date references." (Fernando Charro, Mathematical Reviews, April 2017)
“This book is an excellent introduction to the infinity Laplacian— it is informative and has up-to-date references.” (Fernando Charro, Mathematical Reviews, April 2017)
Erscheinungsdatum | 08.10.2016 |
---|---|
Reihe/Serie | SpringerBriefs in Mathematics |
Zusatzinfo | IX, 68 p. 1 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Schlagworte | computational science and engineering • Degenerate elliptic equations • Fully non-linear equations • image processing and computer vision • Lipschitz extensions • mathematics and statistics • Ordinary differential equations • Partial differential equations • PDE • The infinity laplace operator • Viscosity Solutions |
ISBN-10 | 3-319-31531-5 / 3319315315 |
ISBN-13 | 978-3-319-31531-7 / 9783319315317 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich