Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains
Springer International Publishing (Verlag)
978-3-031-05820-2 (ISBN)
This book develops a class of graded finite element methods to solve singular elliptic boundary value problems in two- and three-dimensional domains. It provides an approachable and self-contained presentation of the topic, including both the mathematical theory and numerical tools necessary to address the major challenges imposed by the singular solution. Moreover, by focusing upon second-order equations with constant coefficients, it manages to derive explicit results that are accessible to the broader computation community. Although written with mathematics graduate students and researchers in mind, this book is also relevant to applied and computational mathematicians, scientists, and engineers in numerical methods who may encounter singular problems.
The Finite Element Method.- The Function Space.- Singularities and Graded Mesh Algorithms.- Error Estimates in Polygonal Domains.- Regularity Estimates and Graded Meshes in Polyhedral Domains.- Anisotropic Error Estimates in Polyhedral Domains.
Erscheinungsdatum | 04.09.2022 |
---|---|
Reihe/Serie | Surveys and Tutorials in the Applied Mathematical Sciences |
Zusatzinfo | X, 179 p. 50 illus., 27 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 281 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | anisotropic mesh algorithm • Elliptic boundary value problem • graded finite element method • Mixed boundary condition • nonsmooth domain • optimal convergence • Regularity Analysis • Singular solution • weighted Sobolev space |
ISBN-10 | 3-031-05820-8 / 3031058208 |
ISBN-13 | 978-3-031-05820-2 / 9783031058202 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich