Complex Non-Kähler Geometry - Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky

Complex Non-Kähler Geometry

Cetraro, Italy 2018
Buch | Softcover
XV, 242 Seiten
2019 | 1st ed. 2019
Springer International Publishing (Verlag)
978-3-030-25882-5 (ISBN)
53,49 inkl. MwSt

Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds.  The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Slawomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. 


- Lectures on Pluripotential Theory on Compact Hermitian Manifolds. - Calabi-YauManifolds with Torsion and Geometric Flows. - Non-Kählerian Compact Complex Surfaces. - Intersection of Quadrics in Cn, Moment-Angle Manifolds, Complex Manifolds and Convex Polytopes.

Erscheinungsdatum
Reihe/Serie C.I.M.E. Foundation Subseries
Lecture Notes in Mathematics
Zusatzinfo XV, 242 p. 38 illus., 25 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 403 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Anomaly Flow • LVMB Manifold • Non-Kähler Complex Manifold • Non-Kählerian Compact Complex Surface • Pluripotential Theory
ISBN-10 3-030-25882-3 / 3030258823
ISBN-13 978-3-030-25882-5 / 9783030258825
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich