Representations and Nilpotent Orbits of Lie Algebraic Systems
Springer International Publishing (Verlag)
978-3-030-23533-8 (ISBN)
- Primitive ideals
- Invariant theory
- Geometry of Lie group actions
- Quantum affine algebras
- Yangians
- Categorification
- Vertex algebras
Preface.- Singular Support of a Vertex Algebra and the Arc Space of its Associated Scheme.- On Cacti and Crystals.- Quotients for Sheets of Conjugacy Classes.- About Polynomiality of the Poisson Semicentre for Parabolic Subalgebras.- On Dynkin Gradings in Simple Lie Algebras.- Multiplicative Slices, Relativistic Toda, and Shifted Quantum Affine Algebras.- Some Properties of Orbital Varieties in Extremal Nilpotent Orbits.- On Involutions in the Weyl Group and B-Orbit Closures in the Orthogonal Case.- Proper Self-Similar Triangle Tiling and Representing Weight Diagrams in the Plane.- Closures of On-Orbits in the Flag Variety for GLn.- On the Spin Calogero-Sutherland Model at Infinity.- Semi-Direct Products Involving Sp2n or Spinn with Free Algebras of Symmetric Invariants.- Primitive Ideals of U(sl( )) and The Robinson-Schensted Algorithm at Infinity.- Prime Spectra of Abelian 2-Categories and Categorifications of Richardson Varieties.
Erscheinungsdatum | 06.11.2020 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | XVII, 553 p. 75 illus., 16 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 866 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | Anthony Joseph mathematics • Anthony Joseph Weizmann Institute • Invariant theory • Lie algebra • Lie algebra representation • Lie Theory • nilpotent group • Nilpotent Lie group • nilpotent orbits • Primitive Ideals • quantum algebra • Representation Theory • Yangians |
ISBN-10 | 3-030-23533-5 / 3030235335 |
ISBN-13 | 978-3-030-23533-8 / 9783030235338 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich