Real Analysis
Springer-Verlag New York Inc.
978-1-4939-4222-0 (ISBN)
In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.
Miklós Laczkovich is Professor of Mathematics at Eötvös Loránd University and the University College London, and was awarded the Ostrowski Prize in 1993 and the Széchenyi Prize in 1998. Vera T. Sós is a Research Fellow at the Alfréd Rényi Institute of Mathematics, and was awarded the Széchenyi Prize in 1997.
A Short Historical Introduction.- Basic Concepts.- Real Numbers.- Infinite Sequences I.- Infinite Sequences II.- Infinite Sequences III.- Rudiments of Infinite Series.- Countable Sets.- Real Valued Functions of One Variable.- Continuity and Limits of Functions.- Various Important Classes of Functions (Elementary Functions).- Differentiation.- Applications of Differentiation.- The Definite Integral.- Integration.- Applications of Integration.- Functions of Bounded Variation.- The Stieltjes Integral.- The Improper Integral.
Erscheinungsdatum | 19.08.2017 |
---|---|
Reihe/Serie | Undergraduate Texts in Mathematics |
Zusatzinfo | 94 Illustrations, black and white; X, 483 p. 94 illus. |
Verlagsort | New York |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Continuous functions • Differentiation • Fourier series • infinite sequences • infinite series • Integration • Limits • Real analysis • Stieltjes integral |
ISBN-10 | 1-4939-4222-0 / 1493942220 |
ISBN-13 | 978-1-4939-4222-0 / 9781493942220 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich