Linear and Integer Programming vs Linear Integration and Counting

A Duality Viewpoint
Buch | Hardcover
168 Seiten
2009
Springer-Verlag New York Inc.
978-0-387-09413-7 (ISBN)

Lese- und Medienproben

Linear and Integer Programming vs Linear Integration and Counting - Jean-Bernard Lasserre
106,99 inkl. MwSt
This book analyzes and compares four closely related problems, namely linear programming, integer programming, linear integration, and linear summation (or counting). The book provides some new insights on duality concepts for integer programs.
Integer programming (IP) is a fascinating topic. Indeed, while linear programming (LP), its c- tinuous analogue, is well understood and extremely ef?cient LP software packages exist, solving an integer program can remain a formidable challenge, even for some small size problems. For instance, the following small (5-variable) IP problem (called the unbounded knapsack problem) min{213x?1928x?11111x?2345x +9123x} 1 2 3 4 5 s.t. 12223x +12224x +36674x +61119x +85569x = 89643482, 1 2 3 4 5 x ,x ,x ,x ,x?N, 1 2 3 4 5 taken from a list of dif?cult knapsack problems in Aardal and Lenstra [2], is not solved even by hours of computing, using for instance the last version of the ef?cient software package CPLEX. However,thisisnotabookonintegerprogramming,asverygoodonesonthistopicalreadyexist. For standard references on the theory and practice of integer programming, the interested reader is referred to, e.g., Nemhauser and Wolsey [113], Schrijver [121], Wolsey [136], and the more recent Bertsimas and Weismantel [21]. On the other hand, this book could provide a complement to the above books as it develops a rather unusual viewpoint.

I Linear Integration and Linear Programming.- The Linear Integration Problem I.- Comparing the Continuous Problems P and I.- II Linear Counting and Integer Programming.- The Linear Counting Problem I.- Relating the Discrete Problems P and I with P.- III Duality.- Duality and Gomory Relaxations.- Barvinok#x2019;s Counting Algorithm and Gomory Relaxations.- A Discrete Farkas Lemma.- The Integer Hull of a Convex Rational Polytope.- Duality and Superadditive Functions.

Reihe/Serie Springer Series in Operations Research and Financial Engineering
Zusatzinfo 2 Illustrations, black and white; XIV, 168 p. 2 illus.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Betriebswirtschaft / Management
ISBN-10 0-387-09413-X / 038709413X
ISBN-13 978-0-387-09413-7 / 9780387094137
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95