Machine Learning Approaches in Financial Analytics
Springer International Publishing (Verlag)
978-3-031-61036-3 (ISBN)
This book addresses the growing need for a comprehensive guide to the application of machine learning in financial analytics. It offers a valuable resource for both beginners and experienced professionals in finance and data science by covering the theoretical foundations, practical implementations, ethical considerations, and future trends in the field. It bridges the gap between theory and practice, providing readers with the tools and knowledge they need to leverage the power of machine learning in the financial sector responsibly.
.- Part I: Foundations.
.- Chapter 1: Introduction to Optimal Execution.
.- Part II: Tools and techniques.
.- Chapter 2: Python Stack for Design and Visualization in Financial Engineering.
.- Chapter 3: Neurodynamic approaches to cardinality-constrained portfolio optimization.
.- Chapter 4: Fully Homomorphic Encrypted Wavelet Neural Network for Privacy-Preserving Bankruptcy Prediction in Banks.
.- Chapter 5: Tools and Measurement Criteria of Ethical Finance through Computational Finance.
.- Chapter 6: Data Mining Techniques for Predicting the Non-Performing Assets (NPA) of Banks in India.
.- Chapter 7: Multiobjective optimization of mean-variance-downside-risk portfolio selection models.
.- Part III: Risk assessment and ethical considerations.
.- Chapter 8: Bankruptcy Forecasting Of Indian Manufacturing Companies Post Ibc Using Machine Learning Techniques.
.- Chapter 9: Ensemble Deep Reinforcement Learning for Financial Trading. Part IV: Real-world Applications.
.- Chapter 10: Bibliometric Analysis of Digital Financial Reporting.
.- Chapter 11: The Quest for Financing Environmental Sustainability in Emerging Nations: Can Internet Access and Financial Technology be Crucial?
.- Chapter 12: A comprehensive review of Bitcoin's energy consumption and its environmental implications, etc.
Erscheinungsdatum | 28.08.2024 |
---|---|
Reihe/Serie | Intelligent Systems Reference Library |
Zusatzinfo | XX, 483 p. 105 illus., 88 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik | |
Wirtschaft ► Betriebswirtschaft / Management ► Finanzierung | |
Schlagworte | Asset Allocation Strategies • Behavioral Finance • Big Data Finance and Economics • Blockchain and Applications • Deep Learning Models in Finance • Digital Financial Reporting • Evolutionary Computation for Financial Application • Evolutionary finance • Financial Prediction and Forecasting • financial risk management • Fuzzy Sets, Rough Sets • Granular Computing for Financial Application • Intelligent Trading Agents • Machine learning in finance • Neural Networks Modeling for Financial Application • Pricing of Structured Securities • Probabilistic Modeling/Inference • Semantic Web and Linked Data • Time Series Analysis • Trading systems & Trading Room Simulation • Trading systems & Trading Room Simulation |
ISBN-10 | 3-031-61036-9 / 3031610369 |
ISBN-13 | 978-3-031-61036-3 / 9783031610363 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich