Recommendation Systems in Software Engineering (eBook)
XIII, 562 Seiten
Springer Berlin (Verlag)
978-3-642-45135-5 (ISBN)
With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data.
This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: 'Part I - Techniques' introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow. 'Part II - Evaluation' summarizes methods and experimental designs for evaluating recommendations in software engineering. 'Part III - Applications' describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, focusing on the engineering insights required to make effective recommendations. The book is complemented by the webpage rsse.org/book, which includes free supplemental materials for readers of this book and anyone interested in recommendation systems in software engineering, including lecture slides, data sets, source code, and an overview of people, groups, papers and tools with regard to recommendation systems in software engineering.
The book is particularly well-suited for graduate students and researchers building new recommendation systems for software engineering applications or in other high-tech fields. It may also serve as the basis for graduate courses on recommendation systems, applied data mining or software engineering. Software engineering practitioners developing recommendation systems or similar applications with predictive functionality will also benefit from the broad spectrum of topics covered.
Martin P. Robillard is an Associate Professor of Computer Science at McGill University. His current research focuses on problems related to API usability, information discovery and knowledge management in software engineering.
Walid Maalej is a Professor of Informatics at the University of Hamburg. He previously led a research group on human and context factors in software at the TU Munich. His current research interests include the context-aware recommendation systems and social software engineering.
Robert J. Walker is an Associate Professor of Computer Science at the University of Calgary. His current research involves automated analysis and support for unanticipated software reuse tasks.
Thomas Zimmermann is a researcher at Microsoft Research, Adjunct Assistant Professor at the University of Calgary and an affiliate faculty member at the University of Washington. He is best known for his research on systematic mining of version archives and bug databases to conduct empirical studies and to build tools.Martin P. Robillard is an Associate Professor of Computer Science at McGill University. His current research focuses on problems related to API usability, information discovery and knowledge management in software engineering.Walid Maalej is a Professor of Informatics at the University of Hamburg. He previously led a research group on human and context factors in software at the TU Munich. His current research interests include the context-aware recommendation systems and social software engineering.Robert J. Walker is an Associate Professor of Computer Science at the University of Calgary. His current research involves automated analysis and support for unanticipated software reuse tasks.Thomas Zimmermann is a researcher at Microsoft Research, Adjunct Assistant Professor at the University of Calgary and an affiliate faculty member at the University of Washington. He is best known for his research on systematic mining of version archives and bug databases to conduct empirical studies and to build tools.
1 An Introduction to Recommendation Systems in Software Engineering.- Part I Techniques.- 2 Basic Approaches in Recommendation Systems.- 3 Data Mining.- 4 Recommendation Systems in-the-Small.- 5 Source Code Based Recommendation Systems.- 6 Mining Bug Data.- 7 Collecting and Processing Interaction Data for Recommendation Systems.- 8 Developer Profiles for Recommendation Systems.- 9 Recommendation Delivery.- Part II Evaluation.- 10 Dimensions and Metrics for Evaluating Recommendation Systems.- 11 Benchmarking.- 12 Simulation.- 13 Field Studies.- Part III Applications.- 14 Reuse-Oriented Code Recommendation Systems.- 15 Recommending Refactoring Operations in Large Software Systems.- 16 Recommending Program Transformations.- 17 Recommendation Systems in Requirements Discovery.- 18 Changes, Evolution and Bugs.- 19 Recommendation Heuristics for Improving Product Line Configuration Processes.
Erscheint lt. Verlag | 30.4.2014 |
---|---|
Zusatzinfo | XIII, 562 p. 109 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Software Entwicklung |
Wirtschaft ► Betriebswirtschaft / Management ► Wirtschaftsinformatik | |
Schlagworte | code reuse • Data Mining • Program Transformation • Recommender Systems • Requirements Engineering • Software Defect Analysis • software development • software evolution • Software Testing |
ISBN-10 | 3-642-45135-7 / 3642451357 |
ISBN-13 | 978-3-642-45135-5 / 9783642451355 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich