Feynman-Kac Formulae - Pierre Del Moral

Feynman-Kac Formulae

Genealogical and Interacting Particle Systems with Applications
Buch | Softcover
556 Seiten
2011 | Softcover reprint of the original 1st ed. 2004
Springer-Verlag New York Inc.
978-1-4419-1902-1 (ISBN)
192,59 inkl. MwSt
The central theme of this book concerns Feynman-Kac path distributions, interacting particle systems, and genealogical tree based models. This re­ cent theory has been stimulated from different directions including biology, physics, probability, and statistics, as well as from many branches in engi­ neering science, such as signal processing, telecommunications, and network analysis. Over the last decade, this subject has matured in ways that make it more complete and beautiful to learn and to use. The objective of this book is to provide a detailed and self-contained discussion on these connec­ tions and the different aspects of this subject. Although particle methods and Feynman-Kac models owe their origins to physics and statistical me­ chanics, particularly to the kinetic theory of fluid and gases, this book can be read without any specific knowledge in these fields. I have tried to make this book accessible for senior undergraduate students having some familiarity with the theory of stochastic processes to advanced postgradu­ ate students as well as researchers and engineers in mathematics, statistics, physics, biology and engineering. I have also tried to give an "expose" of the modem mathematical theory that is useful for the analysis of the asymptotic behavior of Feynman-Kac and particle models.

1 Introduction.- 1.1 On the Origins of Feynman-Kac and Particle Models.- 1.2 Notation and Conventions.- 1.3 Feynman-Kac Path Models.- 1.4 Motivating Examples.- 1.5 Interacting Particle Systems.- 1.6 Sequential Monte Carlo Methodology.- 1.7 Particle Interpretations.- 1.8 A Contents Guide for the Reader.- 2 Feynman-Kac Formulae.- 2.1 Introduction.- 2.2 An Introduction to Markov Chains.- 2.4 Structural Stability Properties.- 2.5 Distribution Flows Models.- 2.6 Feynman-Kac Models in Random Media.- 2.7 Feynman-Kac Semigroups.- 3 Genealogical and Interacting Particle Models.- 3.1 Introduction.- 3.2 Interacting Particle Interpretations.- 3.3 Particle models with Degenerate Potential.- 3.4 Historical and Genealogical Tree Models.- 3.5 Particle Approximation Measures.- 4 Stability of Feynman-Kac Semigroups.- 4.1 Introduction.- 4.2 Contraction Properties of Markov Kernels.- 4.3 Contraction Properties of Feynman-Kac Semigroups.- 4.4 Updated Feynman-Kac Models.- 5 Invariant Measures and Related Topics.- 5.1 Introduction.- 5.2 Existence and Uniqueness.- 5.3 Invariant Measures and Feynman-Kac Modeling.- 5.4 Feynman-Kac and Metropolis-Hastings Models.- 5.5 Feynman-Kac-Metropolis Models.- 6 Annealing Properties.- 6.1 Introduction.- 6.2 Feynman-Kac-Metropolis Models.- 6.3 Feynman-Kac Trapping Models.- 7 Asymptotic Behavior.- 7.1 Introduction.- 7.2 Some Preliminaries.- 7.3 Inequalities for Independent Random Variables.- 7.4 Strong Law of Large Numbers.- 8 Propagation of Chaos.- 8.1 Introduction.- 8.2 Some Preliminaries.- 8.3 Outline of Results.- 8.4 Weak Propagation of Chaos.- 8.5 Relative Entropy Estimates.- 8.6 A Combinatorial Transport Equation.- 8.7 Asymptotic Properties of Boltzmann-Gibbs Distributions.- 8.8 Feynman-Kac Semigroups.- 9 Central Limit Theorems.- 9.1 Introduction.- 9.2Some Preliminaries.- 9.3 Some Local Fluctuation Results.- 9.4 Particle Density Profiles.- 9.5 A Berry-Esseen Type Theorem.- 9.6 A Donsker Type Theorem.- 9.7 Path-Space Models.- 9.8 Covariance Functions.- 10 Large-Deviation Principles.- 10.1 Introduction.- 10.2 Some Preliminary Results.- 10.3 Crámer’s Method.- 10.4 Laplace-Varadhan’s Integral Techniques.- 10.5 Dawson-Gärtner Projective Limits Techniques.- 10.6 Sanov’s Theorem.- 10.7 Path-Space and Interacting Particle Models.- 10.8 Particle Density Profile Models.- 11 Feynman-Kac and Interacting Particle Recipes.- 11.1 Introduction.- 11.2 Interacting Metropolis Models.- 11.3 An Overview of some General Principles.- 11.4 Descendant and Ancestral Genealogies.- 11.5 Conditional Explorations.- 11.6 State-Space Enlargements and Path-Particle Models.- 11.7 Conditional Excursion Particle Models.- 11.8 Branching Selection Variants.- 11.9 Exercises.- 12 Applications.- 12.1 Introduction.- 12.2 Random Excursion Models.- 12.3 Change of Reference Measures.- 12.4 Spectral Analysis of Feynman-Kac-Schrödinger Semigroups.- 12.5 Directed Polymers Simulation.- 12.6 Filtering/Smoothing and Path estimation.- References.

Reihe/Serie Probability and Its Applications
Zusatzinfo 6 Illustrations, black and white; XVIII, 556 p. 6 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Informatik Weitere Themen CAD-Programme
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Thermodynamik
Wirtschaft Betriebswirtschaft / Management
ISBN-10 1-4419-1902-3 / 1441919023
ISBN-13 978-1-4419-1902-1 / 9781441919021
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Einführung in die Geometrische Produktspezifikation

von Daniel Brabec; Ludwig Reißler; Andreas Stenzel

Buch | Softcover (2023)
Europa-Lehrmittel (Verlag)
20,70