Computational Technologies and Electronics
Springer International Publishing (Verlag)
978-3-031-81934-6 (ISBN)
- Noch nicht erschienen - erscheint am 04.02.2025
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
This two-volume set, CCIS 2376 and CCIS 2377, constitutes proceedings from the First International Conference on Computational Technologies and Electronics, ICCTE 2023, held in Siliguri, India, during November 23-25, 2023.
The 46 full papers presented here were carefully selected and reviewed from 114 submissions. These papers have been organized in the following topical sections:
Pat I- Pattern recognition & AI
Part II- Data communication & security; Applied electronics.
.- Pattern Recognition & AI.
.- Resource Description Framework Statement Generation using Soft Attention Based Hybrid Resnet-Bidirectional Long Short Term Memory Model.
.- Evaluating the Tri-Script Writer Verification System Using a Handcrafted Features and Vision Transformer Learning Approach.
.- Wildlife detection using ANN and other modern technology: A survey of literatures.
.- Enhancing Learning Outcomes Through the Use of Conducive Learning Spaces.
.- Smart Diagnosis using Symptoms for Seeking a Specialist Doctor.
.- A Comprehensive Review and Future Prospects of Lie Detection Using Machine Learning.
.- Searching optimizers for Deep Learning based Hyperspectral image classification.
.- Efficient Crop Recommendation System: A Machine Learning Based Approach.
.- Human Fall Detection using Transfer Learning-based 3D CNN.
.- Anomaly Detection in Respiratory Events Using Machine Learning.
.- Federated Learning to Speed Up Pre-processing of Large Data Sets.
.- Flood Susceptibility Zonation using Geospatial Frequency Ratio and Artificial Neural Network techniques within Himalayan Terai Region: A Comparative Exploration.
.- A Fertilizer Recommendation System Using an Assembly of Regressors Coupled with Nature-Inspired Optimization Algorithms.
.- State-of-the-Art in Feature Selection: Applications of the Slime Mould Algorithm.
.- MOODBYTBLB: Impact of Covid-19 among Indians: A Sentiment Analysis Using Textblob.
.- MythBuster: A Comparative Analysis of Few Machine Learning and Deep Learning Models for Fake News Detection.
.- Unsupervised Approach for Word Sense Disambiguation in Bengali.
.- A Hybrid Method for Bengali Word Segmentation from Handwritten Copies of School Students.
.- Securing Social Spaces: Harnessing Deep Learning to Eradicate Cyberbullying.
.- Exploring Intonation patterns in Nepali Speech: A Phonetic and Linguistic Analysis for Text-to-Speech System.
.- Sentiment Analysis on Airline Customer review using Language model and capsule network.
.- Implementation of Digital Healthcare for Improving Maternal Care: A Systematic Review.
.- Video Content Analysis and Classification Based on Human Activity Recognition.
.- Machine Learning Based Expert System for Breast Cancer Prediction (MLESBCP).
.- ARU NET: Follicle Segmentation from Ultrasound Images of Ovaries Using Attention Residual U-NET Model.
.- d-RIMNet: RIMNet with Depthwise Separable Convolutional Layer for Retinal OCTA Image Segmentation.
.- Multi-modal Biometric Authentication: Harnessing Human Gait and Keystroke Dynamics for Enhanced Security.
Erscheint lt. Verlag | 4.2.2025 |
---|---|
Reihe/Serie | Communications in Computer and Information Science |
Zusatzinfo | XX, 328 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | adversarial robustness • aes • CNN • data hiding • Deep learning • Formal Verification • Image Processing • machine learning • Network Security • neural network • Real-Time Systems • Satisfiability Modulo Theory • Schedulability analysis • sentiment analysis • SMT solvers |
ISBN-10 | 3-031-81934-9 / 3031819349 |
ISBN-13 | 978-3-031-81934-6 / 9783031819346 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich