Partial Identification in Econometrics and Related Topics (eBook)
XI, 735 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-59110-5 (ISBN)
This book covers data processing techniques, with economic and financial application being the unifying theme. To make proper investments in economy, the authors need to have a good understanding of the future trends: how will demand change, how will prices change, etc. In general, in science, the usual way to make predictions is:
- to identify a model that best fits the current dynamics, and
- to use this model to predict the future behavior.
In many practical situations-especially in economics-our past experiences are limited. As a result, the authors can only achieve a partial identification. It is therefore important to be able to make predictions based on such partially identified models-which is the main focus of this book. This book emphasizes partial identification techniques, but it also describes and uses other econometric techniques, ranging from more traditional statistical techniques to more innovative ones such as game-theoretic approach, interval techniques, and machine learning. Applications range from general analysis of GDP growth, stock market, and consumer prices to analysis of specific sectors of economics (credit and banking, energy, health, labor, tourism, international trade) to specific issues affecting economy such as ecology, national culture, government regulations, and the existence of shadow economy. This book shows what has been achieved, but even more important are remaining open problems. The authors hope that this book will:
- inspire practitioners to learn how to apply state-of-the-art techniques, especially techniques of optimal transport statistics, to economic and financial problems, and
- inspire researchers to further improve the existing techniques and to come up with new techniques for studying economic and financial phenomena. The authors want to thank all the authors for their contributions and all anonymous referees for their thorough analysis and helpful comments.
The publication of this book-and organization of the conference at which these papers were presented-was supported:
The authors thank the leadership and staff of HUB and VINIF for providing crucial support.
Erscheint lt. Verlag | 1.9.2024 |
---|---|
Reihe/Serie | Studies in Systems, Decision and Control |
Zusatzinfo | XI, 735 p. 113 illus., 96 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik ► Bauwesen | |
Technik ► Nachrichtentechnik | |
Schlagworte | Decision Making • Econometrics • Finance • Income diversificatio • machine learning • regression models |
ISBN-10 | 3-031-59110-0 / 3031591100 |
ISBN-13 | 978-3-031-59110-5 / 9783031591105 |
Haben Sie eine Frage zum Produkt? |
Größe: 25,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich